L(s) = 1 | + (−0.786 − 1.08i)2-s + (−0.244 + 0.752i)4-s + (0.951 + 0.309i)7-s + (−0.266 + 0.0864i)8-s + (0.809 − 0.587i)9-s + (0.913 − 0.406i)11-s + (−0.413 − 1.27i)14-s + (0.942 + 0.684i)16-s + (−1.27 − 0.413i)18-s + (−1.15 − 0.669i)22-s + 1.95i·23-s + (−0.464 + 0.639i)28-s + (−0.564 + 1.73i)29-s − 1.27i·32-s + (0.244 + 0.752i)36-s + (1.27 + 0.413i)37-s + ⋯ |
L(s) = 1 | + (−0.786 − 1.08i)2-s + (−0.244 + 0.752i)4-s + (0.951 + 0.309i)7-s + (−0.266 + 0.0864i)8-s + (0.809 − 0.587i)9-s + (0.913 − 0.406i)11-s + (−0.413 − 1.27i)14-s + (0.942 + 0.684i)16-s + (−1.27 − 0.413i)18-s + (−1.15 − 0.669i)22-s + 1.95i·23-s + (−0.464 + 0.639i)28-s + (−0.564 + 1.73i)29-s − 1.27i·32-s + (0.244 + 0.752i)36-s + (1.27 + 0.413i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.228 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.228 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9330646430\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9330646430\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-0.951 - 0.309i)T \) |
| 11 | \( 1 + (-0.913 + 0.406i)T \) |
good | 2 | \( 1 + (0.786 + 1.08i)T + (-0.309 + 0.951i)T^{2} \) |
| 3 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - 1.95iT - T^{2} \) |
| 29 | \( 1 + (0.564 - 1.73i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-1.27 - 0.413i)T + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 1.82iT - T^{2} \) |
| 47 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 0.209iT - T^{2} \) |
| 71 | \( 1 + (1.47 + 1.07i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.169 - 0.122i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.225652560943077756071077638400, −8.848016179393014651922822568319, −7.87904140875364461688527692137, −7.06105459265265385849685093454, −6.01295197131777820808283029471, −5.13799514709139894371353187221, −3.91781509833830119228549582157, −3.23713948822620039362399249890, −1.81078170087348822665596660449, −1.26139877507412360972888726633,
1.19679896467944076338305182802, 2.49441316282711766809340738063, 4.20398776046277766638072173817, 4.61529202109412784567603619420, 5.90890893062729154487223751241, 6.56180459068783493838888025385, 7.41909643249360629358834014639, 7.87466719378392552099934638346, 8.555153281573854353632950599326, 9.431259021209767936256284706855