L(s) = 1 | + (1.14 − 1.58i)2-s + (−0.873 − 2.68i)4-s + (0.951 − 0.309i)7-s + (−3.39 − 1.10i)8-s + (0.809 + 0.587i)9-s + (−0.104 − 0.994i)11-s + (0.604 − 1.86i)14-s + (−3.36 + 2.44i)16-s + (1.86 − 0.604i)18-s + (−1.69 − 0.978i)22-s + 1.33i·23-s + (−1.66 − 2.28i)28-s + (0.0646 + 0.198i)29-s + 4.57i·32-s + (0.873 − 2.68i)36-s + (−1.86 + 0.604i)37-s + ⋯ |
L(s) = 1 | + (1.14 − 1.58i)2-s + (−0.873 − 2.68i)4-s + (0.951 − 0.309i)7-s + (−3.39 − 1.10i)8-s + (0.809 + 0.587i)9-s + (−0.104 − 0.994i)11-s + (0.604 − 1.86i)14-s + (−3.36 + 2.44i)16-s + (1.86 − 0.604i)18-s + (−1.69 − 0.978i)22-s + 1.33i·23-s + (−1.66 − 2.28i)28-s + (0.0646 + 0.198i)29-s + 4.57i·32-s + (0.873 − 2.68i)36-s + (−1.86 + 0.604i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 + 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 + 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.120060736\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.120060736\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-0.951 + 0.309i)T \) |
| 11 | \( 1 + (0.104 + 0.994i)T \) |
good | 2 | \( 1 + (-1.14 + 1.58i)T + (-0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - 1.33iT - T^{2} \) |
| 29 | \( 1 + (-0.0646 - 0.198i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (1.86 - 0.604i)T + (0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + 0.209iT - T^{2} \) |
| 47 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.951 - 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + 1.82iT - T^{2} \) |
| 71 | \( 1 + (-0.169 + 0.122i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-1.47 - 1.07i)T + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.374639114522056340912302610833, −8.474257704917738853712390811701, −7.44170623782081425244374628055, −6.28995094566477565266326938207, −5.28881200604761983804291672028, −4.88629776426640206879854134222, −3.91788079791182720730223933379, −3.22020840021047724000568431477, −1.98848461305532804372159372989, −1.25356020293228851841569363471,
2.16987635669850160132335701699, 3.50850022085477171616402410963, 4.42943366007254075791561187572, 4.85296218549655100042368197063, 5.72334047690203782581525661309, 6.69285567007733964220204276806, 7.12045479539012419284486820304, 7.943207603108455008212841379840, 8.596691756640877274503853966851, 9.365426776933709853625306614940