Properties

Label 2-1922-1.1-c3-0-30
Degree $2$
Conductor $1922$
Sign $1$
Analytic cond. $113.401$
Root an. cond. $10.6490$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3.03·3-s + 4·4-s − 14.4·5-s − 6.06·6-s + 31.4·7-s − 8·8-s − 17.8·9-s + 28.9·10-s − 42.7·11-s + 12.1·12-s − 32.9·13-s − 62.9·14-s − 43.8·15-s + 16·16-s − 27.3·17-s + 35.6·18-s − 148.·19-s − 57.8·20-s + 95.4·21-s + 85.5·22-s + 89.7·23-s − 24.2·24-s + 84.2·25-s + 65.9·26-s − 135.·27-s + 125.·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.583·3-s + 0.5·4-s − 1.29·5-s − 0.412·6-s + 1.69·7-s − 0.353·8-s − 0.659·9-s + 0.914·10-s − 1.17·11-s + 0.291·12-s − 0.703·13-s − 1.20·14-s − 0.755·15-s + 0.250·16-s − 0.389·17-s + 0.466·18-s − 1.79·19-s − 0.646·20-s + 0.991·21-s + 0.829·22-s + 0.813·23-s − 0.206·24-s + 0.673·25-s + 0.497·26-s − 0.968·27-s + 0.849·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1922\)    =    \(2 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(113.401\)
Root analytic conductor: \(10.6490\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1922,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7789609317\)
\(L(\frac12)\) \(\approx\) \(0.7789609317\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
31 \( 1 \)
good3 \( 1 - 3.03T + 27T^{2} \)
5 \( 1 + 14.4T + 125T^{2} \)
7 \( 1 - 31.4T + 343T^{2} \)
11 \( 1 + 42.7T + 1.33e3T^{2} \)
13 \( 1 + 32.9T + 2.19e3T^{2} \)
17 \( 1 + 27.3T + 4.91e3T^{2} \)
19 \( 1 + 148.T + 6.85e3T^{2} \)
23 \( 1 - 89.7T + 1.21e4T^{2} \)
29 \( 1 + 179.T + 2.43e4T^{2} \)
37 \( 1 - 100.T + 5.06e4T^{2} \)
41 \( 1 + 336.T + 6.89e4T^{2} \)
43 \( 1 - 532.T + 7.95e4T^{2} \)
47 \( 1 - 33.1T + 1.03e5T^{2} \)
53 \( 1 + 416.T + 1.48e5T^{2} \)
59 \( 1 - 116.T + 2.05e5T^{2} \)
61 \( 1 - 139.T + 2.26e5T^{2} \)
67 \( 1 - 380.T + 3.00e5T^{2} \)
71 \( 1 - 1.01e3T + 3.57e5T^{2} \)
73 \( 1 - 385.T + 3.89e5T^{2} \)
79 \( 1 - 469.T + 4.93e5T^{2} \)
83 \( 1 + 418.T + 5.71e5T^{2} \)
89 \( 1 + 464.T + 7.04e5T^{2} \)
97 \( 1 - 712.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.581220667972739493773121687870, −7.955328056063332100555333112899, −7.83889206904895579038831583191, −6.88395458524861797019755957434, −5.50452322079603361183843564500, −4.72252562058911380526777014597, −3.85483601688751392534637440947, −2.61293588478111990091797386091, −1.98399911868277081471765446431, −0.41900476607632897040095932801, 0.41900476607632897040095932801, 1.98399911868277081471765446431, 2.61293588478111990091797386091, 3.85483601688751392534637440947, 4.72252562058911380526777014597, 5.50452322079603361183843564500, 6.88395458524861797019755957434, 7.83889206904895579038831583191, 7.955328056063332100555333112899, 8.581220667972739493773121687870

Graph of the $Z$-function along the critical line