Properties

Label 2-1922-1.1-c3-0-50
Degree $2$
Conductor $1922$
Sign $1$
Analytic cond. $113.401$
Root an. cond. $10.6490$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3.07·3-s + 4·4-s − 1.13·5-s + 6.14·6-s + 31.6·7-s − 8·8-s − 17.5·9-s + 2.27·10-s + 32.0·11-s − 12.2·12-s − 19.4·13-s − 63.2·14-s + 3.49·15-s + 16·16-s − 73.0·17-s + 35.1·18-s − 66.2·19-s − 4.54·20-s − 97.1·21-s − 64.0·22-s + 45.4·23-s + 24.5·24-s − 123.·25-s + 38.8·26-s + 136.·27-s + 126.·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.591·3-s + 0.5·4-s − 0.101·5-s + 0.418·6-s + 1.70·7-s − 0.353·8-s − 0.650·9-s + 0.0718·10-s + 0.877·11-s − 0.295·12-s − 0.414·13-s − 1.20·14-s + 0.0601·15-s + 0.250·16-s − 1.04·17-s + 0.459·18-s − 0.799·19-s − 0.0508·20-s − 1.00·21-s − 0.620·22-s + 0.411·23-s + 0.209·24-s − 0.989·25-s + 0.292·26-s + 0.975·27-s + 0.853·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1922\)    =    \(2 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(113.401\)
Root analytic conductor: \(10.6490\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1922,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.192666106\)
\(L(\frac12)\) \(\approx\) \(1.192666106\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
31 \( 1 \)
good3 \( 1 + 3.07T + 27T^{2} \)
5 \( 1 + 1.13T + 125T^{2} \)
7 \( 1 - 31.6T + 343T^{2} \)
11 \( 1 - 32.0T + 1.33e3T^{2} \)
13 \( 1 + 19.4T + 2.19e3T^{2} \)
17 \( 1 + 73.0T + 4.91e3T^{2} \)
19 \( 1 + 66.2T + 6.85e3T^{2} \)
23 \( 1 - 45.4T + 1.21e4T^{2} \)
29 \( 1 + 125.T + 2.43e4T^{2} \)
37 \( 1 - 316.T + 5.06e4T^{2} \)
41 \( 1 - 434.T + 6.89e4T^{2} \)
43 \( 1 - 290.T + 7.95e4T^{2} \)
47 \( 1 + 267.T + 1.03e5T^{2} \)
53 \( 1 + 96.6T + 1.48e5T^{2} \)
59 \( 1 + 434.T + 2.05e5T^{2} \)
61 \( 1 + 7.78T + 2.26e5T^{2} \)
67 \( 1 - 31.1T + 3.00e5T^{2} \)
71 \( 1 + 768.T + 3.57e5T^{2} \)
73 \( 1 + 153.T + 3.89e5T^{2} \)
79 \( 1 - 835.T + 4.93e5T^{2} \)
83 \( 1 - 573.T + 5.71e5T^{2} \)
89 \( 1 - 774.T + 7.04e5T^{2} \)
97 \( 1 + 1.16e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.911038179398625078128376923113, −8.021685889191344093108065282147, −7.52297446928647169982651587823, −6.43340663287014150794321864268, −5.79902797202977251049617036766, −4.77221422894638470058182608327, −4.11178069162428202998976187906, −2.52133824362132049084864453453, −1.69250026023905366086918090881, −0.59018243116033786583108604867, 0.59018243116033786583108604867, 1.69250026023905366086918090881, 2.52133824362132049084864453453, 4.11178069162428202998976187906, 4.77221422894638470058182608327, 5.79902797202977251049617036766, 6.43340663287014150794321864268, 7.52297446928647169982651587823, 8.021685889191344093108065282147, 8.911038179398625078128376923113

Graph of the $Z$-function along the critical line