Properties

Label 2-1920-1.1-c3-0-7
Degree $2$
Conductor $1920$
Sign $1$
Analytic cond. $113.283$
Root an. cond. $10.6434$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s − 2·7-s + 9·9-s − 30·11-s − 2·13-s + 15·15-s − 54·17-s + 106·19-s + 6·21-s + 18·23-s + 25·25-s − 27·27-s + 138·29-s − 292·31-s + 90·33-s + 10·35-s − 270·37-s + 6·39-s − 466·41-s − 32·43-s − 45·45-s + 74·47-s − 339·49-s + 162·51-s + 302·53-s + 150·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.107·7-s + 1/3·9-s − 0.822·11-s − 0.0426·13-s + 0.258·15-s − 0.770·17-s + 1.27·19-s + 0.0623·21-s + 0.163·23-s + 1/5·25-s − 0.192·27-s + 0.883·29-s − 1.69·31-s + 0.474·33-s + 0.0482·35-s − 1.19·37-s + 0.0246·39-s − 1.77·41-s − 0.113·43-s − 0.149·45-s + 0.229·47-s − 0.988·49-s + 0.444·51-s + 0.782·53-s + 0.367·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(113.283\)
Root analytic conductor: \(10.6434\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9037386784\)
\(L(\frac12)\) \(\approx\) \(0.9037386784\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 + p T \)
good7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 + 30 T + p^{3} T^{2} \)
13 \( 1 + 2 T + p^{3} T^{2} \)
17 \( 1 + 54 T + p^{3} T^{2} \)
19 \( 1 - 106 T + p^{3} T^{2} \)
23 \( 1 - 18 T + p^{3} T^{2} \)
29 \( 1 - 138 T + p^{3} T^{2} \)
31 \( 1 + 292 T + p^{3} T^{2} \)
37 \( 1 + 270 T + p^{3} T^{2} \)
41 \( 1 + 466 T + p^{3} T^{2} \)
43 \( 1 + 32 T + p^{3} T^{2} \)
47 \( 1 - 74 T + p^{3} T^{2} \)
53 \( 1 - 302 T + p^{3} T^{2} \)
59 \( 1 - 518 T + p^{3} T^{2} \)
61 \( 1 + 86 T + p^{3} T^{2} \)
67 \( 1 + 448 T + p^{3} T^{2} \)
71 \( 1 - 328 T + p^{3} T^{2} \)
73 \( 1 - 258 T + p^{3} T^{2} \)
79 \( 1 - 288 T + p^{3} T^{2} \)
83 \( 1 - 236 T + p^{3} T^{2} \)
89 \( 1 - 1254 T + p^{3} T^{2} \)
97 \( 1 + 790 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.813483063614097419652865338111, −8.009011128935705626579160788328, −7.17434496401149581644720713841, −6.61669316684672375972116723161, −5.39411828641656510260136310502, −5.03660618731131770261732604316, −3.87856512236311230754446885343, −3.00250349855259251295587129156, −1.75524469938146499941777608180, −0.44846442092585047321767292918, 0.44846442092585047321767292918, 1.75524469938146499941777608180, 3.00250349855259251295587129156, 3.87856512236311230754446885343, 5.03660618731131770261732604316, 5.39411828641656510260136310502, 6.61669316684672375972116723161, 7.17434496401149581644720713841, 8.009011128935705626579160788328, 8.813483063614097419652865338111

Graph of the $Z$-function along the critical line