| L(s) = 1 | + 3-s + (1.76 − 1.37i)5-s + (0.159 − 0.159i)7-s + 9-s + (−1.60 − 1.60i)11-s − 4.36i·13-s + (1.76 − 1.37i)15-s + (−4.63 + 4.63i)17-s + (−3.97 − 3.97i)19-s + (0.159 − 0.159i)21-s + (−5.58 − 5.58i)23-s + (1.20 − 4.85i)25-s + 27-s + (6.25 − 6.25i)29-s − 1.69i·31-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + (0.787 − 0.615i)5-s + (0.0602 − 0.0602i)7-s + 0.333·9-s + (−0.485 − 0.485i)11-s − 1.21i·13-s + (0.454 − 0.355i)15-s + (−1.12 + 1.12i)17-s + (−0.912 − 0.912i)19-s + (0.0348 − 0.0348i)21-s + (−1.16 − 1.16i)23-s + (0.241 − 0.970i)25-s + 0.192·27-s + (1.16 − 1.16i)29-s − 0.304i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.184 + 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.184 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.956414732\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.956414732\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-1.76 + 1.37i)T \) |
| good | 7 | \( 1 + (-0.159 + 0.159i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.60 + 1.60i)T + 11iT^{2} \) |
| 13 | \( 1 + 4.36iT - 13T^{2} \) |
| 17 | \( 1 + (4.63 - 4.63i)T - 17iT^{2} \) |
| 19 | \( 1 + (3.97 + 3.97i)T + 19iT^{2} \) |
| 23 | \( 1 + (5.58 + 5.58i)T + 23iT^{2} \) |
| 29 | \( 1 + (-6.25 + 6.25i)T - 29iT^{2} \) |
| 31 | \( 1 + 1.69iT - 31T^{2} \) |
| 37 | \( 1 - 0.609iT - 37T^{2} \) |
| 41 | \( 1 + 0.538iT - 41T^{2} \) |
| 43 | \( 1 - 0.592iT - 43T^{2} \) |
| 47 | \( 1 + (-4.85 - 4.85i)T + 47iT^{2} \) |
| 53 | \( 1 - 4.82T + 53T^{2} \) |
| 59 | \( 1 + (5.78 - 5.78i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.65 + 1.65i)T + 61iT^{2} \) |
| 67 | \( 1 + 0.485iT - 67T^{2} \) |
| 71 | \( 1 - 6.86T + 71T^{2} \) |
| 73 | \( 1 + (0.160 - 0.160i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.13T + 79T^{2} \) |
| 83 | \( 1 - 6.88T + 83T^{2} \) |
| 89 | \( 1 - 17.0T + 89T^{2} \) |
| 97 | \( 1 + (-9.64 + 9.64i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.685717323705707862251591437103, −8.473198910063088918741523137209, −7.67234021042630078796058506141, −6.30066432913366363325051446974, −6.02558721593459834169635205992, −4.75727457278354598203556935388, −4.16774977845325908235225900664, −2.74377866924992750579867619138, −2.13263552385949410110247430486, −0.60636701039157573298229746851,
1.82376750754717442576599772008, 2.33468484358730546389497298753, 3.49819115034836565605405439379, 4.48538943655673205485136234383, 5.38295385906155338538708019394, 6.49859029515984331416145234693, 6.94389491213567020976015106129, 7.83303315125428167892800991370, 8.821385041781061277236496379989, 9.352556410894495757818726488618