| L(s) = 1 | + 3-s + (0.154 + 2.23i)5-s + (−1.27 + 1.27i)7-s + 9-s + (3.66 + 3.66i)11-s + 0.758i·13-s + (0.154 + 2.23i)15-s + (0.715 − 0.715i)17-s + (−0.203 − 0.203i)19-s + (−1.27 + 1.27i)21-s + (1.11 + 1.11i)23-s + (−4.95 + 0.689i)25-s + 27-s + (−6.80 + 6.80i)29-s − 6.28i·31-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + (0.0690 + 0.997i)5-s + (−0.483 + 0.483i)7-s + 0.333·9-s + (1.10 + 1.10i)11-s + 0.210i·13-s + (0.0398 + 0.575i)15-s + (0.173 − 0.173i)17-s + (−0.0466 − 0.0466i)19-s + (−0.279 + 0.279i)21-s + (0.231 + 0.231i)23-s + (−0.990 + 0.137i)25-s + 0.192·27-s + (−1.26 + 1.26i)29-s − 1.12i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.323 - 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.323 - 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.932257548\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.932257548\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-0.154 - 2.23i)T \) |
| good | 7 | \( 1 + (1.27 - 1.27i)T - 7iT^{2} \) |
| 11 | \( 1 + (-3.66 - 3.66i)T + 11iT^{2} \) |
| 13 | \( 1 - 0.758iT - 13T^{2} \) |
| 17 | \( 1 + (-0.715 + 0.715i)T - 17iT^{2} \) |
| 19 | \( 1 + (0.203 + 0.203i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1.11 - 1.11i)T + 23iT^{2} \) |
| 29 | \( 1 + (6.80 - 6.80i)T - 29iT^{2} \) |
| 31 | \( 1 + 6.28iT - 31T^{2} \) |
| 37 | \( 1 - 3.34iT - 37T^{2} \) |
| 41 | \( 1 + 11.3iT - 41T^{2} \) |
| 43 | \( 1 + 4.74iT - 43T^{2} \) |
| 47 | \( 1 + (-7.94 - 7.94i)T + 47iT^{2} \) |
| 53 | \( 1 + 5.01T + 53T^{2} \) |
| 59 | \( 1 + (4.46 - 4.46i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.88 + 3.88i)T + 61iT^{2} \) |
| 67 | \( 1 - 12.6iT - 67T^{2} \) |
| 71 | \( 1 + 4.57T + 71T^{2} \) |
| 73 | \( 1 + (6.99 - 6.99i)T - 73iT^{2} \) |
| 79 | \( 1 - 4.49T + 79T^{2} \) |
| 83 | \( 1 - 17.9T + 83T^{2} \) |
| 89 | \( 1 + 1.53T + 89T^{2} \) |
| 97 | \( 1 + (5.91 - 5.91i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.244347609116021938402077792883, −9.035328500344960760526110741843, −7.60387858970233742014798671084, −7.19046584249738415561140060726, −6.42113396639101170821825039473, −5.56837710207924232378024248550, −4.27503091793891582287311093043, −3.54771364031191982391387111378, −2.59075504353168761910682618838, −1.69764091576135791387625046662,
0.65485211579826632260478191486, 1.73977042422886512446059371830, 3.21947309558619472722625067314, 3.87056637278571627709997542605, 4.76018496809064749857737409564, 5.87166709246027034141458051012, 6.49976444613709648934356031790, 7.60529879336704255187220805199, 8.261480795285188221600224741439, 9.059469627012318137959140633053