L(s) = 1 | + (0.618 + 1.61i)3-s + (1 + 2i)5-s − 1.23·7-s + (−2.23 + 2.00i)9-s + 4i·11-s − 2.47·13-s + (−2.61 + 2.85i)15-s − 2.47·17-s + 6.47·19-s + (−0.763 − 2.00i)21-s − 3.23i·23-s + (−3 + 4i)25-s + (−4.61 − 2.38i)27-s + 4.47·29-s + 6.47i·31-s + ⋯ |
L(s) = 1 | + (0.356 + 0.934i)3-s + (0.447 + 0.894i)5-s − 0.467·7-s + (−0.745 + 0.666i)9-s + 1.20i·11-s − 0.685·13-s + (−0.675 + 0.736i)15-s − 0.599·17-s + 1.48·19-s + (−0.166 − 0.436i)21-s − 0.674i·23-s + (−0.600 + 0.800i)25-s + (−0.888 − 0.458i)27-s + 0.830·29-s + 1.16i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0430i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0430i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.358483870\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.358483870\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.618 - 1.61i)T \) |
| 5 | \( 1 + (-1 - 2i)T \) |
good | 7 | \( 1 + 1.23T + 7T^{2} \) |
| 11 | \( 1 - 4iT - 11T^{2} \) |
| 13 | \( 1 + 2.47T + 13T^{2} \) |
| 17 | \( 1 + 2.47T + 17T^{2} \) |
| 19 | \( 1 - 6.47T + 19T^{2} \) |
| 23 | \( 1 + 3.23iT - 23T^{2} \) |
| 29 | \( 1 - 4.47T + 29T^{2} \) |
| 31 | \( 1 - 6.47iT - 31T^{2} \) |
| 37 | \( 1 + 10.4T + 37T^{2} \) |
| 41 | \( 1 + 4iT - 41T^{2} \) |
| 43 | \( 1 - 4.76iT - 43T^{2} \) |
| 47 | \( 1 + 4.76iT - 47T^{2} \) |
| 53 | \( 1 + 8.94iT - 53T^{2} \) |
| 59 | \( 1 - 8.94iT - 59T^{2} \) |
| 61 | \( 1 + 12.9iT - 61T^{2} \) |
| 67 | \( 1 - 1.70iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 12.9iT - 73T^{2} \) |
| 79 | \( 1 - 1.52iT - 79T^{2} \) |
| 83 | \( 1 - 14.1T + 83T^{2} \) |
| 89 | \( 1 - 8iT - 89T^{2} \) |
| 97 | \( 1 - 4.94iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.734746229175175725729498634966, −9.085158616053260992401047126222, −8.086676484671409783052637775503, −7.07449960426598488745347540577, −6.65110360546312288973967458159, −5.34683142609885895839023787148, −4.81574271665069569587958182192, −3.65496844501323009813583875261, −2.89141154897237030512165251806, −2.02575835566290647547803316759,
0.44934588871415829609363851441, 1.53909520135487834531496044688, 2.72125564515835117949195986429, 3.55012628166787667464948530040, 4.90236504855492429881050590042, 5.73954561477660369910692330548, 6.35293877173931294965281898595, 7.34819216720719436382419859003, 8.017148268925577103842738485859, 8.865449977057221731687648201050