Properties

Label 8-1920e4-1.1-c1e4-0-39
Degree $8$
Conductor $1.359\times 10^{13}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·5-s + 4·7-s + 2·9-s + 8·13-s − 8·15-s + 8·17-s + 8·19-s − 8·21-s + 2·25-s − 6·27-s + 16·35-s − 24·37-s − 16·39-s + 8·45-s − 8·49-s − 16·51-s − 16·57-s + 8·63-s + 32·65-s − 4·75-s + 11·81-s + 12·83-s + 32·85-s + 32·91-s + 32·95-s − 32·101-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.78·5-s + 1.51·7-s + 2/3·9-s + 2.21·13-s − 2.06·15-s + 1.94·17-s + 1.83·19-s − 1.74·21-s + 2/5·25-s − 1.15·27-s + 2.70·35-s − 3.94·37-s − 2.56·39-s + 1.19·45-s − 8/7·49-s − 2.24·51-s − 2.11·57-s + 1.00·63-s + 3.96·65-s − 0.461·75-s + 11/9·81-s + 1.31·83-s + 3.47·85-s + 3.35·91-s + 3.28·95-s − 3.18·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.125365939\)
\(L(\frac12)\) \(\approx\) \(6.125365939\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
good7$D_{4}$ \( ( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
13$D_{4}$ \( ( 1 - 4 T + 10 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 80 T^{2} + 2638 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
31$C_4\times C_2$ \( 1 - 76 T^{2} + 3046 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 + 12 T + 90 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 66 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 64 T^{2} + 3742 T^{4} - 64 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 80 T^{2} + 5038 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 52 T^{2} + 2998 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 128 T^{2} + 8574 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$D_4\times C_2$ \( 1 - 100 T^{2} + 8038 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 204 T^{2} + 20006 T^{4} - 204 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 6 T + 50 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 114 T^{2} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 196 T^{2} + 23302 T^{4} - 196 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.35457188956882177201292349012, −6.35293877173931294965281898595, −6.02384617514785693454845659586, −5.73954561477660369910692330548, −5.70866049226917336200488860738, −5.51529630432656155778138240866, −5.34683142609885895839023787148, −5.27272636591011672547538204911, −4.90236504855492429881050590042, −4.81574271665069569587958182192, −4.52903679137464369762874948625, −4.26722089127849816611634357586, −3.65496844501323009813583875261, −3.55012628166787667464948530040, −3.54531824839118269724297477756, −3.47019601178675685245474746040, −2.89141154897237030512165251806, −2.72125564515835117949195986429, −2.02575835566290647547803316759, −1.99694225793644290427788135479, −1.56543519787092597308843189020, −1.53909520135487834531496044688, −1.36325112006812944098780144196, −0.906206098396523172788130310920, −0.44934588871415829609363851441, 0.44934588871415829609363851441, 0.906206098396523172788130310920, 1.36325112006812944098780144196, 1.53909520135487834531496044688, 1.56543519787092597308843189020, 1.99694225793644290427788135479, 2.02575835566290647547803316759, 2.72125564515835117949195986429, 2.89141154897237030512165251806, 3.47019601178675685245474746040, 3.54531824839118269724297477756, 3.55012628166787667464948530040, 3.65496844501323009813583875261, 4.26722089127849816611634357586, 4.52903679137464369762874948625, 4.81574271665069569587958182192, 4.90236504855492429881050590042, 5.27272636591011672547538204911, 5.34683142609885895839023787148, 5.51529630432656155778138240866, 5.70866049226917336200488860738, 5.73954561477660369910692330548, 6.02384617514785693454845659586, 6.35293877173931294965281898595, 6.35457188956882177201292349012

Graph of the $Z$-function along the critical line