Properties

Label 8-1920e4-1.1-c1e4-0-25
Degree $8$
Conductor $135895.450\times 10^{8}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 6·9-s − 16·13-s + 2·25-s + 4·27-s + 16·37-s + 64·39-s − 4·49-s − 8·75-s − 37·81-s + 24·83-s + 24·107-s − 64·111-s − 96·117-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 16·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 108·169-s + 173-s + ⋯
L(s)  = 1  − 2.30·3-s + 2·9-s − 4.43·13-s + 2/5·25-s + 0.769·27-s + 2.63·37-s + 10.2·39-s − 4/7·49-s − 0.923·75-s − 4.11·81-s + 2.63·83-s + 2.32·107-s − 6.07·111-s − 8.87·117-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.31·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8.30·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.6366850223\)
\(L(\frac12)\) \(\approx\) \(0.6366850223\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
good7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.43678939689454967201466238410, −6.16103682246704684348476870080, −6.08327730587091537403102742913, −6.02125429198556818268826223766, −5.79956355113466671773247379996, −5.27360600366751785401594080367, −5.26764827002638977775951727462, −5.01952055162942933530679123113, −4.94331406557041100144054401688, −4.80610120875662198515325850982, −4.46182943611757777984384949423, −4.34748853158236285323119408948, −4.29370681968692912922022378637, −3.67667091349029810149532658277, −3.32916990494010074871021674523, −3.25749098564292109044279945196, −2.69411563677460750204983311165, −2.59029108507560910914665935113, −2.51342313720341614693626871516, −2.14959076284134416362613747544, −1.82809752596557022559839577463, −1.38611170643453274046476245152, −0.71304166986781221057140016004, −0.61250278737152370601670085154, −0.32304449282992140779406087289, 0.32304449282992140779406087289, 0.61250278737152370601670085154, 0.71304166986781221057140016004, 1.38611170643453274046476245152, 1.82809752596557022559839577463, 2.14959076284134416362613747544, 2.51342313720341614693626871516, 2.59029108507560910914665935113, 2.69411563677460750204983311165, 3.25749098564292109044279945196, 3.32916990494010074871021674523, 3.67667091349029810149532658277, 4.29370681968692912922022378637, 4.34748853158236285323119408948, 4.46182943611757777984384949423, 4.80610120875662198515325850982, 4.94331406557041100144054401688, 5.01952055162942933530679123113, 5.26764827002638977775951727462, 5.27360600366751785401594080367, 5.79956355113466671773247379996, 6.02125429198556818268826223766, 6.08327730587091537403102742913, 6.16103682246704684348476870080, 6.43678939689454967201466238410

Graph of the $Z$-function along the critical line