L(s) = 1 | + i·3-s + (−1.54 + 1.61i)5-s + (−0.143 + 0.143i)7-s − 9-s + (0.749 − 0.749i)11-s − 3.29·13-s + (−1.61 − 1.54i)15-s + (1.35 − 1.35i)17-s + (−4.25 + 4.25i)19-s + (−0.143 − 0.143i)21-s + (−0.837 − 0.837i)23-s + (−0.207 − 4.99i)25-s − i·27-s + (−2.77 − 2.77i)29-s − 6.60i·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.692 + 0.721i)5-s + (−0.0543 + 0.0543i)7-s − 0.333·9-s + (0.225 − 0.225i)11-s − 0.912·13-s + (−0.416 − 0.399i)15-s + (0.329 − 0.329i)17-s + (−0.976 + 0.976i)19-s + (−0.0314 − 0.0314i)21-s + (−0.174 − 0.174i)23-s + (−0.0414 − 0.999i)25-s − 0.192i·27-s + (−0.515 − 0.515i)29-s − 1.18i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0208 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0208 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3789577767\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3789577767\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (1.54 - 1.61i)T \) |
good | 7 | \( 1 + (0.143 - 0.143i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.749 + 0.749i)T - 11iT^{2} \) |
| 13 | \( 1 + 3.29T + 13T^{2} \) |
| 17 | \( 1 + (-1.35 + 1.35i)T - 17iT^{2} \) |
| 19 | \( 1 + (4.25 - 4.25i)T - 19iT^{2} \) |
| 23 | \( 1 + (0.837 + 0.837i)T + 23iT^{2} \) |
| 29 | \( 1 + (2.77 + 2.77i)T + 29iT^{2} \) |
| 31 | \( 1 + 6.60iT - 31T^{2} \) |
| 37 | \( 1 - 10.0T + 37T^{2} \) |
| 41 | \( 1 - 1.72iT - 41T^{2} \) |
| 43 | \( 1 + 4.17T + 43T^{2} \) |
| 47 | \( 1 + (8.54 + 8.54i)T + 47iT^{2} \) |
| 53 | \( 1 - 5.05iT - 53T^{2} \) |
| 59 | \( 1 + (3.08 + 3.08i)T + 59iT^{2} \) |
| 61 | \( 1 + (-5.00 + 5.00i)T - 61iT^{2} \) |
| 67 | \( 1 + 4.26T + 67T^{2} \) |
| 71 | \( 1 + 13.2T + 71T^{2} \) |
| 73 | \( 1 + (-11.6 + 11.6i)T - 73iT^{2} \) |
| 79 | \( 1 - 9.95T + 79T^{2} \) |
| 83 | \( 1 + 10.0iT - 83T^{2} \) |
| 89 | \( 1 + 5.76T + 89T^{2} \) |
| 97 | \( 1 + (-11.7 + 11.7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.119229868568539879310408292662, −7.993981470019477159256076671309, −7.69713788123999066337629758271, −6.52832677030834343580648084774, −5.92301849556323191970251910349, −4.73026843897808724532759811059, −4.02753170429768365490857446118, −3.17009779638607081868382886223, −2.18169484218857003243017764520, −0.14455063903767439666735515740,
1.22104948820808250780662726806, 2.42960471773013396980181043694, 3.59687783302242672243542214989, 4.59510104696982343268878000882, 5.24086787188664586601698599744, 6.39297224694644375472934318153, 7.12532283312195097939543937362, 7.83233817770745257680117012047, 8.546870815839127591280652742369, 9.240548005719134966667134989708