| L(s) = 1 | + (0.0980 + 0.995i)2-s + (−0.881 + 0.471i)3-s + (−0.980 + 0.195i)4-s + (−0.634 − 0.773i)5-s + (−0.555 − 0.831i)6-s + (−0.290 − 0.956i)8-s + (0.555 − 0.831i)9-s + (0.707 − 0.707i)10-s + (0.773 − 0.634i)12-s + (0.923 + 0.382i)15-s + (0.923 − 0.382i)16-s + (−1.42 + 0.591i)17-s + (0.881 + 0.471i)18-s + (0.0569 + 0.577i)19-s + (0.773 + 0.634i)20-s + ⋯ |
| L(s) = 1 | + (0.0980 + 0.995i)2-s + (−0.881 + 0.471i)3-s + (−0.980 + 0.195i)4-s + (−0.634 − 0.773i)5-s + (−0.555 − 0.831i)6-s + (−0.290 − 0.956i)8-s + (0.555 − 0.831i)9-s + (0.707 − 0.707i)10-s + (0.773 − 0.634i)12-s + (0.923 + 0.382i)15-s + (0.923 − 0.382i)16-s + (−1.42 + 0.591i)17-s + (0.881 + 0.471i)18-s + (0.0569 + 0.577i)19-s + (0.773 + 0.634i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.336 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.336 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6333812820\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6333812820\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.0980 - 0.995i)T \) |
| 3 | \( 1 + (0.881 - 0.471i)T \) |
| 5 | \( 1 + (0.634 + 0.773i)T \) |
| good | 7 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (-0.831 + 0.555i)T^{2} \) |
| 13 | \( 1 + (-0.195 - 0.980i)T^{2} \) |
| 17 | \( 1 + (1.42 - 0.591i)T + (0.707 - 0.707i)T^{2} \) |
| 19 | \( 1 + (-0.0569 - 0.577i)T + (-0.980 + 0.195i)T^{2} \) |
| 23 | \( 1 + (-1.95 + 0.388i)T + (0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (0.831 + 0.555i)T^{2} \) |
| 31 | \( 1 + (-1.38 - 1.38i)T + iT^{2} \) |
| 37 | \( 1 + (-0.980 - 0.195i)T^{2} \) |
| 41 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 43 | \( 1 + (-0.555 - 0.831i)T^{2} \) |
| 47 | \( 1 + (-0.360 - 0.871i)T + (-0.707 + 0.707i)T^{2} \) |
| 53 | \( 1 + (-0.482 - 1.59i)T + (-0.831 + 0.555i)T^{2} \) |
| 59 | \( 1 + (-0.195 + 0.980i)T^{2} \) |
| 61 | \( 1 + (0.902 + 1.68i)T + (-0.555 + 0.831i)T^{2} \) |
| 67 | \( 1 + (0.555 - 0.831i)T^{2} \) |
| 71 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 73 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 79 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + (-1.10 + 0.108i)T + (0.980 - 0.195i)T^{2} \) |
| 89 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.298104412442480327406953190608, −8.846693067792340457513167805257, −8.098320500075411699156086618145, −7.04795167447869546791814839851, −6.51399269518485686190996303321, −5.57127102701518236370363054118, −4.74413329959974018318998005211, −4.37481987481558273003645893690, −3.32136786383683610576539564158, −1.02593860001278301409310209096,
0.67192998363772249442507512794, 2.23392221005704814104657497936, 3.03142237527126025229764219075, 4.30818301354173097270847307414, 4.83812149343785273933282957036, 5.92476136027861602146683140834, 6.84191546010076660809011517433, 7.43760935020406202507174135083, 8.477717408379870589509414884576, 9.293595126987423453577583447764