Properties

Label 16-192e8-1.1-c8e8-0-4
Degree $16$
Conductor $1.847\times 10^{18}$
Sign $1$
Analytic cond. $1.40086\times 10^{15}$
Root an. cond. $8.84402$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 56·3-s − 1.58e3·7-s + 1.73e3·9-s − 2.52e4·13-s + 1.57e5·19-s − 8.87e4·21-s + 1.27e6·25-s − 5.35e4·27-s − 8.05e5·31-s + 3.98e6·37-s − 1.41e6·39-s + 6.96e6·43-s − 2.47e7·49-s + 8.84e6·57-s + 5.15e7·61-s − 2.74e6·63-s + 5.82e7·67-s − 1.16e8·73-s + 7.12e7·75-s − 1.72e8·79-s + 4.42e7·81-s + 3.99e7·91-s − 4.51e7·93-s − 3.37e8·97-s − 5.67e8·103-s + 6.80e8·109-s + 2.23e8·111-s + ⋯
L(s)  = 1  + 0.691·3-s − 0.659·7-s + 0.263·9-s − 0.883·13-s + 1.21·19-s − 0.456·21-s + 3.25·25-s − 0.100·27-s − 0.872·31-s + 2.12·37-s − 0.610·39-s + 2.03·43-s − 4.29·49-s + 0.837·57-s + 3.72·61-s − 0.174·63-s + 2.88·67-s − 4.11·73-s + 2.25·75-s − 4.42·79-s + 1.02·81-s + 0.582·91-s − 0.603·93-s − 3.81·97-s − 5.03·103-s + 4.82·109-s + 1.47·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(9-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+4)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.40086\times 10^{15}\)
Root analytic conductor: \(8.84402\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 3^{8} ,\ ( \ : [4]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(3.726614610\)
\(L(\frac12)\) \(\approx\) \(3.726614610\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 56 T + 52 p^{3} T^{2} + 296 p^{5} T^{3} - 73610 p^{6} T^{4} + 296 p^{13} T^{5} + 52 p^{19} T^{6} - 56 p^{24} T^{7} + p^{32} T^{8} \)
good5 \( 1 - 1272648 T^{2} + 986044587676 T^{4} - 4507921360123992 p^{3} T^{6} + \)\(40\!\cdots\!46\)\( p^{4} T^{8} - 4507921360123992 p^{19} T^{10} + 986044587676 p^{32} T^{12} - 1272648 p^{48} T^{14} + p^{64} T^{16} \)
7 \( ( 1 + 792 T + 1902052 p T^{2} + 465602472 p^{2} T^{3} + 248698652010 p^{3} T^{4} + 465602472 p^{10} T^{5} + 1902052 p^{17} T^{6} + 792 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
11 \( 1 - 690279240 T^{2} + 236022924955056796 T^{4} - \)\(51\!\cdots\!60\)\( T^{6} + \)\(10\!\cdots\!70\)\( T^{8} - \)\(51\!\cdots\!60\)\( p^{16} T^{10} + 236022924955056796 p^{32} T^{12} - 690279240 p^{48} T^{14} + p^{64} T^{16} \)
13 \( ( 1 + 12616 T + 1039561756 T^{2} + 7797164084728 T^{3} + 875052521380176070 T^{4} + 7797164084728 p^{8} T^{5} + 1039561756 p^{16} T^{6} + 12616 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
17 \( 1 - 16830416904 T^{2} + \)\(16\!\cdots\!40\)\( T^{4} - \)\(11\!\cdots\!04\)\( T^{6} + \)\(66\!\cdots\!30\)\( T^{8} - \)\(11\!\cdots\!04\)\( p^{16} T^{10} + \)\(16\!\cdots\!40\)\( p^{32} T^{12} - 16830416904 p^{48} T^{14} + p^{64} T^{16} \)
19 \( ( 1 - 78968 T + 36706719484 T^{2} - 105466892368664 p T^{3} + \)\(68\!\cdots\!82\)\( T^{4} - 105466892368664 p^{9} T^{5} + 36706719484 p^{16} T^{6} - 78968 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
23 \( 1 - 395524557576 T^{2} + \)\(83\!\cdots\!56\)\( T^{4} - \)\(11\!\cdots\!48\)\( T^{6} + \)\(19\!\cdots\!10\)\( p^{2} T^{8} - \)\(11\!\cdots\!48\)\( p^{16} T^{10} + \)\(83\!\cdots\!56\)\( p^{32} T^{12} - 395524557576 p^{48} T^{14} + p^{64} T^{16} \)
29 \( 1 - 617402677064 T^{2} + \)\(35\!\cdots\!00\)\( T^{4} - \)\(28\!\cdots\!84\)\( T^{6} + \)\(15\!\cdots\!10\)\( T^{8} - \)\(28\!\cdots\!84\)\( p^{16} T^{10} + \)\(35\!\cdots\!00\)\( p^{32} T^{12} - 617402677064 p^{48} T^{14} + p^{64} T^{16} \)
31 \( ( 1 + 402776 T + 791943872956 T^{2} - 565782812999015704 T^{3} - \)\(34\!\cdots\!58\)\( T^{4} - 565782812999015704 p^{8} T^{5} + 791943872956 p^{16} T^{6} + 402776 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
37 \( ( 1 - 1992504 T + 11461469334556 T^{2} - 16962144775672405896 T^{3} + \)\(57\!\cdots\!46\)\( T^{4} - 16962144775672405896 p^{8} T^{5} + 11461469334556 p^{16} T^{6} - 1992504 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
41 \( 1 - 36147290149640 T^{2} + \)\(69\!\cdots\!64\)\( T^{4} - \)\(89\!\cdots\!20\)\( T^{6} + \)\(82\!\cdots\!86\)\( T^{8} - \)\(89\!\cdots\!20\)\( p^{16} T^{10} + \)\(69\!\cdots\!64\)\( p^{32} T^{12} - 36147290149640 p^{48} T^{14} + p^{64} T^{16} \)
43 \( ( 1 - 3481336 T + 30451129088764 T^{2} - 88880673074563064392 T^{3} + \)\(47\!\cdots\!70\)\( T^{4} - 88880673074563064392 p^{8} T^{5} + 30451129088764 p^{16} T^{6} - 3481336 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
47 \( 1 - 84329770555400 T^{2} + \)\(42\!\cdots\!84\)\( T^{4} - \)\(14\!\cdots\!00\)\( T^{6} + \)\(39\!\cdots\!46\)\( T^{8} - \)\(14\!\cdots\!00\)\( p^{16} T^{10} + \)\(42\!\cdots\!84\)\( p^{32} T^{12} - 84329770555400 p^{48} T^{14} + p^{64} T^{16} \)
53 \( 1 - 302720879701320 T^{2} + \)\(47\!\cdots\!32\)\( T^{4} - \)\(48\!\cdots\!40\)\( T^{6} + \)\(35\!\cdots\!38\)\( T^{8} - \)\(48\!\cdots\!40\)\( p^{16} T^{10} + \)\(47\!\cdots\!32\)\( p^{32} T^{12} - 302720879701320 p^{48} T^{14} + p^{64} T^{16} \)
59 \( 1 - 418106735077704 T^{2} + \)\(12\!\cdots\!32\)\( T^{4} - \)\(25\!\cdots\!20\)\( T^{6} + \)\(42\!\cdots\!86\)\( T^{8} - \)\(25\!\cdots\!20\)\( p^{16} T^{10} + \)\(12\!\cdots\!32\)\( p^{32} T^{12} - 418106735077704 p^{48} T^{14} + p^{64} T^{16} \)
61 \( ( 1 - 25791800 T + 776119358675740 T^{2} - \)\(12\!\cdots\!96\)\( T^{3} + \)\(21\!\cdots\!62\)\( T^{4} - \)\(12\!\cdots\!96\)\( p^{8} T^{5} + 776119358675740 p^{16} T^{6} - 25791800 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
67 \( ( 1 - 29100344 T + 1390295718759292 T^{2} - \)\(31\!\cdots\!68\)\( T^{3} + \)\(82\!\cdots\!18\)\( T^{4} - \)\(31\!\cdots\!68\)\( p^{8} T^{5} + 1390295718759292 p^{16} T^{6} - 29100344 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
71 \( 1 - 3097321650280200 T^{2} + \)\(45\!\cdots\!00\)\( T^{4} - \)\(42\!\cdots\!44\)\( T^{6} + \)\(30\!\cdots\!82\)\( T^{8} - \)\(42\!\cdots\!44\)\( p^{16} T^{10} + \)\(45\!\cdots\!00\)\( p^{32} T^{12} - 3097321650280200 p^{48} T^{14} + p^{64} T^{16} \)
73 \( ( 1 + 58427384 T + 3220924222100764 T^{2} + \)\(12\!\cdots\!08\)\( T^{3} + \)\(39\!\cdots\!50\)\( T^{4} + \)\(12\!\cdots\!08\)\( p^{8} T^{5} + 3220924222100764 p^{16} T^{6} + 58427384 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
79 \( ( 1 + 86227288 T + 5753370966322108 T^{2} + \)\(28\!\cdots\!04\)\( T^{3} + \)\(12\!\cdots\!34\)\( T^{4} + \)\(28\!\cdots\!04\)\( p^{8} T^{5} + 5753370966322108 p^{16} T^{6} + 86227288 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
83 \( 1 - 13893089988345672 T^{2} + \)\(91\!\cdots\!28\)\( T^{4} - \)\(36\!\cdots\!36\)\( T^{6} + \)\(10\!\cdots\!14\)\( T^{8} - \)\(36\!\cdots\!36\)\( p^{16} T^{10} + \)\(91\!\cdots\!28\)\( p^{32} T^{12} - 13893089988345672 p^{48} T^{14} + p^{64} T^{16} \)
89 \( 1 - 18654727400513288 T^{2} + \)\(18\!\cdots\!60\)\( T^{4} - \)\(11\!\cdots\!24\)\( T^{6} + \)\(55\!\cdots\!78\)\( T^{8} - \)\(11\!\cdots\!24\)\( p^{16} T^{10} + \)\(18\!\cdots\!60\)\( p^{32} T^{12} - 18654727400513288 p^{48} T^{14} + p^{64} T^{16} \)
97 \( ( 1 + 168663352 T + 33441055405097116 T^{2} + \)\(35\!\cdots\!08\)\( T^{3} + \)\(39\!\cdots\!06\)\( T^{4} + \)\(35\!\cdots\!08\)\( p^{8} T^{5} + 33441055405097116 p^{16} T^{6} + 168663352 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.24563750607547970123860489544, −4.19116394436607111852213424330, −3.58753212682813751718439099496, −3.53836327991040406760772165459, −3.48087386680664440092491921968, −3.45375722645920764631879085169, −3.09829802416928831068254171504, −3.08252366424465185278255898425, −2.97006305793343859352109051864, −2.52720852906433583764009470653, −2.47701403391729618483427055382, −2.44394258824939761734026612127, −2.37831796882786581128391395065, −2.34224648930473369462809074756, −1.77271825585439178287717337558, −1.70414326439912076515240856980, −1.35788674064987840245728925543, −1.22517210223240221819199425082, −1.19133047465709866573519182462, −1.08563068650051730947928350506, −0.951540213690240645543073920326, −0.73931958928839394971826274446, −0.24930468509583835791263309453, −0.21330784500402935362826811027, −0.20472354193883119956078275291, 0.20472354193883119956078275291, 0.21330784500402935362826811027, 0.24930468509583835791263309453, 0.73931958928839394971826274446, 0.951540213690240645543073920326, 1.08563068650051730947928350506, 1.19133047465709866573519182462, 1.22517210223240221819199425082, 1.35788674064987840245728925543, 1.70414326439912076515240856980, 1.77271825585439178287717337558, 2.34224648930473369462809074756, 2.37831796882786581128391395065, 2.44394258824939761734026612127, 2.47701403391729618483427055382, 2.52720852906433583764009470653, 2.97006305793343859352109051864, 3.08252366424465185278255898425, 3.09829802416928831068254171504, 3.45375722645920764631879085169, 3.48087386680664440092491921968, 3.53836327991040406760772165459, 3.58753212682813751718439099496, 4.19116394436607111852213424330, 4.24563750607547970123860489544

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.