Properties

Label 4-192e2-1.1-c8e2-0-0
Degree $4$
Conductor $36864$
Sign $1$
Analytic cond. $6117.85$
Root an. cond. $8.84402$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 126·3-s − 5.57e3·7-s + 9.31e3·9-s + 2.63e4·13-s + 2.88e5·19-s + 7.02e5·21-s + 4.48e5·25-s − 3.47e5·27-s − 1.45e6·31-s + 3.92e6·37-s − 3.31e6·39-s − 1.56e5·43-s + 1.17e7·49-s − 3.62e7·57-s − 3.51e7·61-s − 5.19e7·63-s − 3.42e7·67-s + 5.62e7·73-s − 5.64e7·75-s − 1.83e7·79-s − 1.73e7·81-s − 1.46e8·91-s + 1.83e8·93-s − 2.57e8·97-s − 5.43e8·109-s − 4.95e8·111-s + 2.44e8·117-s + ⋯
L(s)  = 1  − 1.55·3-s − 2.32·7-s + 1.41·9-s + 0.920·13-s + 2.20·19-s + 3.60·21-s + 1.14·25-s − 0.652·27-s − 1.57·31-s + 2.09·37-s − 1.43·39-s − 0.0457·43-s + 2.03·49-s − 3.43·57-s − 2.53·61-s − 3.29·63-s − 1.70·67-s + 1.98·73-s − 1.78·75-s − 0.471·79-s − 0.404·81-s − 2.13·91-s + 2.45·93-s − 2.90·97-s − 3.85·109-s − 3.26·111-s + 1.30·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+4)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(6117.85\)
Root analytic conductor: \(8.84402\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 36864,\ (\ :4, 4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.06190869019\)
\(L(\frac12)\) \(\approx\) \(0.06190869019\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 14 p^{2} T + p^{8} T^{2} \)
good5$C_2^2$ \( 1 - 448322 T^{2} + p^{16} T^{4} \)
7$C_2$ \( ( 1 + 398 p T + p^{8} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 74615230 T^{2} + p^{16} T^{4} \)
13$C_2$ \( ( 1 - 13150 T + p^{8} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 9544036610 T^{2} + p^{16} T^{4} \)
19$C_2$ \( ( 1 - 144002 T + p^{8} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 154186508930 T^{2} + p^{16} T^{4} \)
29$C_2^2$ \( 1 - 606859926722 T^{2} + p^{16} T^{4} \)
31$C_2$ \( ( 1 + 728738 T + p^{8} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 1964446 T + p^{8} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 14997407035010 T^{2} + p^{16} T^{4} \)
43$C_2$ \( ( 1 + 78142 T + p^{8} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 35234322443522 T^{2} + p^{16} T^{4} \)
53$C_2^2$ \( 1 - 124246846237250 T^{2} + p^{16} T^{4} \)
59$C_2^2$ \( 1 - 268618401162050 T^{2} + p^{16} T^{4} \)
61$C_2$ \( ( 1 + 17578274 T + p^{8} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 17136766 T + p^{8} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 621182343784322 T^{2} + p^{16} T^{4} \)
73$C_2$ \( ( 1 - 28139330 T + p^{8} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 9182498 T + p^{8} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 3083295701563966 T^{2} + p^{16} T^{4} \)
89$C_2^2$ \( 1 - 1271157775602050 T^{2} + p^{16} T^{4} \)
97$C_2$ \( ( 1 + 128722558 T + p^{8} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.27842132424535676489518340011, −10.74702631597041894625329361422, −10.55797485071300290038199046690, −9.649564183896836964609948613275, −9.500713611456830895797617202516, −9.226629261037411717674908961276, −8.265564573597418229813744956856, −7.43297184495942713747825060255, −7.12331809745398978894000531445, −6.41154097679017247876098822429, −6.23277526712282718603787827700, −5.66459456218300965103038959200, −5.23191954487186675238405664344, −4.44488754505901311002922659413, −3.69446511946735511213971824553, −3.16310398887605375498984123926, −2.73354332234528429171769849027, −1.26385910026616628852121778392, −1.04908825119493175411588131662, −0.079939641677210007811450181877, 0.079939641677210007811450181877, 1.04908825119493175411588131662, 1.26385910026616628852121778392, 2.73354332234528429171769849027, 3.16310398887605375498984123926, 3.69446511946735511213971824553, 4.44488754505901311002922659413, 5.23191954487186675238405664344, 5.66459456218300965103038959200, 6.23277526712282718603787827700, 6.41154097679017247876098822429, 7.12331809745398978894000531445, 7.43297184495942713747825060255, 8.265564573597418229813744956856, 9.226629261037411717674908961276, 9.500713611456830895797617202516, 9.649564183896836964609948613275, 10.55797485071300290038199046690, 10.74702631597041894625329361422, 11.27842132424535676489518340011

Graph of the $Z$-function along the critical line