L(s) = 1 | + (−5.07 − 1.13i)3-s + (−11.2 − 11.2i)5-s − 30.2·7-s + (24.4 + 11.5i)9-s + (14.9 − 14.9i)11-s + (10.4 + 10.4i)13-s + (44.3 + 69.9i)15-s + 69.5i·17-s + (36.4 − 36.4i)19-s + (153. + 34.2i)21-s − 1.28i·23-s + 128. i·25-s + (−110. − 86.1i)27-s + (119. − 119. i)29-s + 172. i·31-s + ⋯ |
L(s) = 1 | + (−0.975 − 0.218i)3-s + (−1.00 − 1.00i)5-s − 1.63·7-s + (0.904 + 0.426i)9-s + (0.410 − 0.410i)11-s + (0.223 + 0.223i)13-s + (0.763 + 1.20i)15-s + 0.992i·17-s + (0.439 − 0.439i)19-s + (1.59 + 0.356i)21-s − 0.0116i·23-s + 1.03i·25-s + (−0.789 − 0.613i)27-s + (0.764 − 0.764i)29-s + 1.00i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.606 - 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.606 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.399778 + 0.198005i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.399778 + 0.198005i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (5.07 + 1.13i)T \) |
good | 5 | \( 1 + (11.2 + 11.2i)T + 125iT^{2} \) |
| 7 | \( 1 + 30.2T + 343T^{2} \) |
| 11 | \( 1 + (-14.9 + 14.9i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-10.4 - 10.4i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 - 69.5iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-36.4 + 36.4i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 1.28iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-119. + 119. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 - 172. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (235. - 235. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 19.9T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-294. - 294. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 69.5T + 1.03e5T^{2} \) |
| 53 | \( 1 + (122. + 122. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (63.2 - 63.2i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (352. + 352. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-228. + 228. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 524. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 578. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 745. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (286. + 286. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 203.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 39.4T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.32740174515637744112801375202, −11.47677690994016535539068127891, −10.33703218162823992274971964753, −9.256182203325393774498305398792, −8.171457830621322051356447457317, −6.84379305199001847590134142326, −6.03435072235121301567675044753, −4.65162704260025767840721117121, −3.52416972052946325366912015637, −0.934887860241167300571926652026,
0.30470618966050872620404116201, 3.12674004410195522960962647308, 4.08219583736876093610542403902, 5.74863999579112172186009206346, 6.83050119157820423072239467699, 7.34653947902691382672929682903, 9.237025175668660574171325132065, 10.14800136367253084901695814495, 10.95268108868262071195548342877, 11.97502126484810352287837644825