L(s) = 1 | + (−0.563 − 5.16i)3-s + (−13.1 − 13.1i)5-s + 13.2·7-s + (−26.3 + 5.82i)9-s + (24.0 − 24.0i)11-s + (−30.7 − 30.7i)13-s + (−60.5 + 75.4i)15-s + 56.8i·17-s + (−74.2 + 74.2i)19-s + (−7.47 − 68.5i)21-s + 21.7i·23-s + 221. i·25-s + (44.9 + 132. i)27-s + (−102. + 102. i)29-s − 219. i·31-s + ⋯ |
L(s) = 1 | + (−0.108 − 0.994i)3-s + (−1.17 − 1.17i)5-s + 0.716·7-s + (−0.976 + 0.215i)9-s + (0.660 − 0.660i)11-s + (−0.656 − 0.656i)13-s + (−1.04 + 1.29i)15-s + 0.811i·17-s + (−0.896 + 0.896i)19-s + (−0.0777 − 0.712i)21-s + 0.197i·23-s + 1.77i·25-s + (0.320 + 0.947i)27-s + (−0.657 + 0.657i)29-s − 1.27i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.853 - 0.521i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.853 - 0.521i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.168002 + 0.597060i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.168002 + 0.597060i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.563 + 5.16i)T \) |
good | 5 | \( 1 + (13.1 + 13.1i)T + 125iT^{2} \) |
| 7 | \( 1 - 13.2T + 343T^{2} \) |
| 11 | \( 1 + (-24.0 + 24.0i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (30.7 + 30.7i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 - 56.8iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (74.2 - 74.2i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 21.7iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (102. - 102. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 219. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-83.3 + 83.3i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 7.92T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-153. - 153. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 208.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (390. + 390. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-221. + 221. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (416. + 416. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-284. + 284. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 26.9iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 839. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 556. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-400. - 400. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 974.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.55e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.67412679798970651046260715182, −10.95371801899544094148679626472, −9.138512869492435047914908824679, −7.982147845654128812750600940494, −7.930307729731545987040389845790, −6.22994247121221820545477451196, −5.02615158201059719276011268724, −3.72949245816752778526146068435, −1.62238030511567074152953730436, −0.27835237280485727888423757551,
2.66735493395272996375506089644, 4.05309642209675957945199131260, 4.79386479370760758696444099924, 6.61242780528836624839842513652, 7.48525207203316029328670837841, 8.731758059945221637088660095631, 9.805432087943175245452540695706, 10.91380795496540325876327109424, 11.44151504249958689004030757458, 12.19235939631202270668137070614