L(s) = 1 | + (2.65 + 4.46i)3-s + (5.27 − 5.27i)5-s + 22.9·7-s + (−12.9 + 23.7i)9-s + (10.6 + 10.6i)11-s + (12.7 − 12.7i)13-s + (37.5 + 9.57i)15-s − 134. i·17-s + (46.9 + 46.9i)19-s + (60.8 + 102. i)21-s + 93.7i·23-s + 69.2i·25-s + (−140. + 5.17i)27-s + (161. + 161. i)29-s + 120. i·31-s + ⋯ |
L(s) = 1 | + (0.510 + 0.859i)3-s + (0.472 − 0.472i)5-s + 1.23·7-s + (−0.478 + 0.878i)9-s + (0.291 + 0.291i)11-s + (0.271 − 0.271i)13-s + (0.646 + 0.164i)15-s − 1.91i·17-s + (0.566 + 0.566i)19-s + (0.632 + 1.06i)21-s + 0.849i·23-s + 0.554i·25-s + (−0.999 + 0.0369i)27-s + (1.03 + 1.03i)29-s + 0.698i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.765 - 0.643i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.765 - 0.643i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.36852 + 0.862904i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.36852 + 0.862904i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.65 - 4.46i)T \) |
good | 5 | \( 1 + (-5.27 + 5.27i)T - 125iT^{2} \) |
| 7 | \( 1 - 22.9T + 343T^{2} \) |
| 11 | \( 1 + (-10.6 - 10.6i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (-12.7 + 12.7i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 134. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-46.9 - 46.9i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 - 93.7iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-161. - 161. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 120. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-2.42 - 2.42i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + 253.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-135. + 135. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 468.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-321. + 321. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-119. - 119. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-310. + 310. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (705. + 705. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 501. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 641. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.23e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (87.3 - 87.3i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 1.19e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.05e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97603868661459588567987058369, −11.19353622100833825558721478301, −10.05892678125261417838974001043, −9.222327051950166968193331412696, −8.357489352966400057457100408008, −7.27237491535670927641726981383, −5.31025421825926399699019146650, −4.83518703647825219702467493475, −3.24263263723266374733386012045, −1.57389724753921303164397413688,
1.32896420654670648920016949388, 2.51707466887203530034225173633, 4.18331354022819555462058242115, 5.90140982924325820006497346311, 6.75514779262730053926378109720, 8.101947856273995577819565361171, 8.575664819613124403563113992772, 10.02432927440020126465051852395, 11.13336816736301075885134672969, 11.95987544302566858156498712219