L(s) = 1 | + (1.13 − 5.07i)3-s + (11.2 − 11.2i)5-s − 30.2·7-s + (−24.4 − 11.5i)9-s + (−14.9 − 14.9i)11-s + (10.4 − 10.4i)13-s + (−44.3 − 69.9i)15-s + 69.5i·17-s + (36.4 + 36.4i)19-s + (−34.2 + 153. i)21-s − 1.28i·23-s − 128. i·25-s + (−86.1 + 110. i)27-s + (−119. − 119. i)29-s − 172. i·31-s + ⋯ |
L(s) = 1 | + (0.218 − 0.975i)3-s + (1.00 − 1.00i)5-s − 1.63·7-s + (−0.904 − 0.426i)9-s + (−0.410 − 0.410i)11-s + (0.223 − 0.223i)13-s + (−0.763 − 1.20i)15-s + 0.992i·17-s + (0.439 + 0.439i)19-s + (−0.356 + 1.59i)21-s − 0.0116i·23-s − 1.03i·25-s + (−0.613 + 0.789i)27-s + (−0.764 − 0.764i)29-s − 1.00i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 + 0.209i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.977 + 0.209i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.129705 - 1.22748i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.129705 - 1.22748i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.13 + 5.07i)T \) |
good | 5 | \( 1 + (-11.2 + 11.2i)T - 125iT^{2} \) |
| 7 | \( 1 + 30.2T + 343T^{2} \) |
| 11 | \( 1 + (14.9 + 14.9i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (-10.4 + 10.4i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 - 69.5iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-36.4 - 36.4i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 1.28iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (119. + 119. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 + 172. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (235. + 235. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 19.9T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-294. + 294. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 69.5T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-122. + 122. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-63.2 - 63.2i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (352. - 352. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (-228. - 228. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 524. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 578. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 745. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-286. + 286. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 203.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 39.4T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.05240776312709683201073055778, −10.46631744658389913093252237018, −9.431066326688607696263515881993, −8.731689376711612369128592887734, −7.49361528855878113291447167833, −6.09138917966828754628929181716, −5.72477936913770669131032118875, −3.54199990024611346731593196235, −2.06724172410520033130698812096, −0.49422898274047715067767349067,
2.63451590091626989049489521286, 3.38995338464247217162828905773, 5.13305485383914127388566338380, 6.27835648753290152339272665996, 7.17176049687126827947838044965, 9.015880737073113600511969638480, 9.728882997159512336713727199861, 10.27616417742597475962935068946, 11.24217201471197216024476272226, 12.69070371964135040818707633288