L(s) = 1 | + (0.151 − 5.19i)3-s + (−4.66 + 4.66i)5-s − 0.405·7-s + (−26.9 − 1.56i)9-s + (−5.82 − 5.82i)11-s + (−35.2 + 35.2i)13-s + (23.5 + 24.9i)15-s + 49.3i·17-s + (−108. − 108. i)19-s + (−0.0612 + 2.10i)21-s + 130. i·23-s + 81.4i·25-s + (−12.2 + 139. i)27-s + (172. + 172. i)29-s + 36.1i·31-s + ⋯ |
L(s) = 1 | + (0.0290 − 0.999i)3-s + (−0.417 + 0.417i)5-s − 0.0219·7-s + (−0.998 − 0.0581i)9-s + (−0.159 − 0.159i)11-s + (−0.751 + 0.751i)13-s + (0.405 + 0.429i)15-s + 0.703i·17-s + (−1.30 − 1.30i)19-s + (−0.000636 + 0.0219i)21-s + 1.18i·23-s + 0.651i·25-s + (−0.0870 + 0.996i)27-s + (1.10 + 1.10i)29-s + 0.209i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.566 - 0.824i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.566 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.127405 + 0.242147i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.127405 + 0.242147i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.151 + 5.19i)T \) |
good | 5 | \( 1 + (4.66 - 4.66i)T - 125iT^{2} \) |
| 7 | \( 1 + 0.405T + 343T^{2} \) |
| 11 | \( 1 + (5.82 + 5.82i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (35.2 - 35.2i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 - 49.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (108. + 108. i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 - 130. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-172. - 172. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 36.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (257. + 257. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 5.87T + 6.89e4T^{2} \) |
| 43 | \( 1 + (170. - 170. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 181.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-148. + 148. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (567. + 567. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-481. + 481. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (296. + 296. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 533. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 178. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 528. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-713. + 713. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 204.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 275.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.48134601419319400743332738323, −11.48412548123484101059818935978, −10.75674817513671492033755977930, −9.240478260932563720635516163212, −8.260849374817806631896914873127, −7.15785223435838000375910963524, −6.50848876731306498514290560694, −4.99990583401243905743763859017, −3.30029061826482581824053002972, −1.87331132917904278721191185409,
0.11261427026631422184189130635, 2.68325534151667758651300743554, 4.17109053647265896864818623086, 5.01209502185114570307343069438, 6.33938070387149555099781889003, 7.997889885897288960013985486538, 8.642566608682191993152595796281, 10.03691801210304036980762665223, 10.42974164863599651797763487611, 11.84108943306855418453293674573