| L(s) = 1 | + (−5.19 + 0.143i)3-s − 7.96i·5-s + 25.6i·7-s + (26.9 − 1.49i)9-s + 23.3·11-s − 55.6·13-s + (1.14 + 41.3i)15-s − 115. i·17-s − 82.4i·19-s + (−3.69 − 133. i)21-s − 28.1·23-s + 61.5·25-s + (−139. + 11.6i)27-s − 105. i·29-s − 226. i·31-s + ⋯ |
| L(s) = 1 | + (−0.999 + 0.0277i)3-s − 0.712i·5-s + 1.38i·7-s + (0.998 − 0.0553i)9-s + 0.639·11-s − 1.18·13-s + (0.0197 + 0.712i)15-s − 1.64i·17-s − 0.995i·19-s + (−0.0384 − 1.38i)21-s − 0.255·23-s + 0.492·25-s + (−0.996 + 0.0830i)27-s − 0.676i·29-s − 1.30i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0277 + 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0277 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.629905 - 0.612686i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.629905 - 0.612686i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (5.19 - 0.143i)T \) |
| good | 5 | \( 1 + 7.96iT - 125T^{2} \) |
| 7 | \( 1 - 25.6iT - 343T^{2} \) |
| 11 | \( 1 - 23.3T + 1.33e3T^{2} \) |
| 13 | \( 1 + 55.6T + 2.19e3T^{2} \) |
| 17 | \( 1 + 115. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 82.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 28.1T + 1.21e4T^{2} \) |
| 29 | \( 1 + 105. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 226. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 295.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 446. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 90.6iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 446.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 332. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 261.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 232.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 636. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 449.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 354.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 368. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 913.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.06e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 521.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.94979168107613166567575482134, −11.19883283314074128275825234398, −9.551685774756188659792226718916, −9.220791059575593089342620603949, −7.64062320922187194451014773914, −6.43359474033067766237022964521, −5.30256326097154144490672035974, −4.61516872086037179307663908899, −2.41437188504169083477318887591, −0.47286106827891498172927911098,
1.37793048718440429698592870252, 3.64079878502229648477803470570, 4.73183911990799184156090358195, 6.27095606530347154362563433373, 6.95859791635937675971813579253, 7.967956135880004375622397836542, 9.848472189731414245239274148456, 10.42610168677986121656296973142, 11.17715104763268201377594658197, 12.29284676661516152296988693090