Properties

Label 2-192-192.107-c1-0-5
Degree $2$
Conductor $192$
Sign $-0.505 - 0.862i$
Analytic cond. $1.53312$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.970 + 1.02i)2-s + (1.04 + 1.37i)3-s + (−0.116 − 1.99i)4-s + (0.178 + 0.267i)5-s + (−2.43 − 0.260i)6-s + (−0.862 + 2.08i)7-s + (2.16 + 1.81i)8-s + (−0.803 + 2.89i)9-s + (−0.449 − 0.0758i)10-s + (−1.97 − 0.392i)11-s + (2.63 − 2.25i)12-s + (5.61 + 3.75i)13-s + (−1.30 − 2.90i)14-s + (−0.181 + 0.527i)15-s + (−3.97 + 0.464i)16-s + (−1.92 − 1.92i)17-s + ⋯
L(s)  = 1  + (−0.686 + 0.727i)2-s + (0.605 + 0.796i)3-s + (−0.0581 − 0.998i)4-s + (0.0800 + 0.119i)5-s + (−0.994 − 0.106i)6-s + (−0.326 + 0.787i)7-s + (0.766 + 0.642i)8-s + (−0.267 + 0.963i)9-s + (−0.142 − 0.0239i)10-s + (−0.594 − 0.118i)11-s + (0.759 − 0.650i)12-s + (1.55 + 1.04i)13-s + (−0.348 − 0.777i)14-s + (−0.0469 + 0.136i)15-s + (−0.993 + 0.116i)16-s + (−0.467 − 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.505 - 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-0.505 - 0.862i$
Analytic conductor: \(1.53312\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1/2),\ -0.505 - 0.862i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.481268 + 0.839614i\)
\(L(\frac12)\) \(\approx\) \(0.481268 + 0.839614i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.970 - 1.02i)T \)
3 \( 1 + (-1.04 - 1.37i)T \)
good5 \( 1 + (-0.178 - 0.267i)T + (-1.91 + 4.61i)T^{2} \)
7 \( 1 + (0.862 - 2.08i)T + (-4.94 - 4.94i)T^{2} \)
11 \( 1 + (1.97 + 0.392i)T + (10.1 + 4.20i)T^{2} \)
13 \( 1 + (-5.61 - 3.75i)T + (4.97 + 12.0i)T^{2} \)
17 \( 1 + (1.92 + 1.92i)T + 17iT^{2} \)
19 \( 1 + (3.54 + 2.36i)T + (7.27 + 17.5i)T^{2} \)
23 \( 1 + (-2.19 - 5.29i)T + (-16.2 + 16.2i)T^{2} \)
29 \( 1 + (1.06 + 5.33i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 - 4.81T + 31T^{2} \)
37 \( 1 + (-1.42 - 2.13i)T + (-14.1 + 34.1i)T^{2} \)
41 \( 1 + (-7.50 + 3.10i)T + (28.9 - 28.9i)T^{2} \)
43 \( 1 + (-0.371 - 0.0738i)T + (39.7 + 16.4i)T^{2} \)
47 \( 1 + (-4.36 + 4.36i)T - 47iT^{2} \)
53 \( 1 + (-1.66 + 8.37i)T + (-48.9 - 20.2i)T^{2} \)
59 \( 1 + (-2.84 + 1.90i)T + (22.5 - 54.5i)T^{2} \)
61 \( 1 + (0.814 + 4.09i)T + (-56.3 + 23.3i)T^{2} \)
67 \( 1 + (9.80 - 1.95i)T + (61.8 - 25.6i)T^{2} \)
71 \( 1 + (-4.67 - 1.93i)T + (50.2 + 50.2i)T^{2} \)
73 \( 1 + (-3.32 + 1.37i)T + (51.6 - 51.6i)T^{2} \)
79 \( 1 + (0.888 - 0.888i)T - 79iT^{2} \)
83 \( 1 + (7.24 - 10.8i)T + (-31.7 - 76.6i)T^{2} \)
89 \( 1 + (-6.70 - 2.77i)T + (62.9 + 62.9i)T^{2} \)
97 \( 1 + 17.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33944174927408530301626995032, −11.45022858004690593456262566936, −10.69918866780147081722584732995, −9.554085901611456278449462321461, −8.883387046448799474949218450629, −8.152961399388265097510158752416, −6.67921685664052204851538184298, −5.62879653118923301593908408146, −4.28738610913146881119509339190, −2.42514149527015193539084794016, 1.11093264303286266287858257275, 2.82943786708072312360156369312, 3.99747254624856000202332527697, 6.23435746104867086424403324637, 7.40225346355121502478563940152, 8.318969929887382987712643160077, 9.025673020948415805798180107849, 10.46165197464592844060420997104, 10.91787666617169888074018117644, 12.48470651894260060106726853758

Graph of the $Z$-function along the critical line