Properties

Label 2-1911-1.1-c3-0-235
Degree $2$
Conductor $1911$
Sign $-1$
Analytic cond. $112.752$
Root an. cond. $10.6185$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.80·2-s + 3·3-s + 6.49·4-s + 3.12·5-s + 11.4·6-s − 5.73·8-s + 9·9-s + 11.8·10-s − 22.0·11-s + 19.4·12-s + 13·13-s + 9.36·15-s − 73.7·16-s + 9.29·17-s + 34.2·18-s − 120.·19-s + 20.2·20-s − 84.0·22-s + 142.·23-s − 17.2·24-s − 115.·25-s + 49.4·26-s + 27·27-s − 299.·29-s + 35.6·30-s − 52.7·31-s − 234.·32-s + ⋯
L(s)  = 1  + 1.34·2-s + 0.577·3-s + 0.811·4-s + 0.279·5-s + 0.777·6-s − 0.253·8-s + 0.333·9-s + 0.375·10-s − 0.605·11-s + 0.468·12-s + 0.277·13-s + 0.161·15-s − 1.15·16-s + 0.132·17-s + 0.448·18-s − 1.45·19-s + 0.226·20-s − 0.814·22-s + 1.28·23-s − 0.146·24-s − 0.922·25-s + 0.373·26-s + 0.192·27-s − 1.91·29-s + 0.216·30-s − 0.305·31-s − 1.29·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1911\)    =    \(3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(112.752\)
Root analytic conductor: \(10.6185\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1911,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 \)
13 \( 1 - 13T \)
good2 \( 1 - 3.80T + 8T^{2} \)
5 \( 1 - 3.12T + 125T^{2} \)
11 \( 1 + 22.0T + 1.33e3T^{2} \)
17 \( 1 - 9.29T + 4.91e3T^{2} \)
19 \( 1 + 120.T + 6.85e3T^{2} \)
23 \( 1 - 142.T + 1.21e4T^{2} \)
29 \( 1 + 299.T + 2.43e4T^{2} \)
31 \( 1 + 52.7T + 2.97e4T^{2} \)
37 \( 1 + 169.T + 5.06e4T^{2} \)
41 \( 1 + 40.7T + 6.89e4T^{2} \)
43 \( 1 - 240.T + 7.95e4T^{2} \)
47 \( 1 + 398.T + 1.03e5T^{2} \)
53 \( 1 - 315.T + 1.48e5T^{2} \)
59 \( 1 + 58.0T + 2.05e5T^{2} \)
61 \( 1 - 563.T + 2.26e5T^{2} \)
67 \( 1 - 329.T + 3.00e5T^{2} \)
71 \( 1 + 610.T + 3.57e5T^{2} \)
73 \( 1 + 816.T + 3.89e5T^{2} \)
79 \( 1 - 1.02e3T + 4.93e5T^{2} \)
83 \( 1 + 1.42e3T + 5.71e5T^{2} \)
89 \( 1 + 595.T + 7.04e5T^{2} \)
97 \( 1 + 374.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.534542578783395019275415507149, −7.49907961817281965354793652945, −6.71874562657858517778967904872, −5.80471736851999485641363743673, −5.20434170391312044836034609054, −4.22390772819132650917237013329, −3.57179670366677317467078267616, −2.63472472066021368431823978482, −1.80235813760227871159486424818, 0, 1.80235813760227871159486424818, 2.63472472066021368431823978482, 3.57179670366677317467078267616, 4.22390772819132650917237013329, 5.20434170391312044836034609054, 5.80471736851999485641363743673, 6.71874562657858517778967904872, 7.49907961817281965354793652945, 8.534542578783395019275415507149

Graph of the $Z$-function along the critical line