Properties

Label 2-1904-1.1-c3-0-81
Degree $2$
Conductor $1904$
Sign $1$
Analytic cond. $112.339$
Root an. cond. $10.5990$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.36·3-s + 12.6·5-s + 7·7-s + 1.83·9-s + 10.9·11-s + 28.7·13-s + 67.8·15-s − 17·17-s − 52.6·19-s + 37.5·21-s + 160.·23-s + 34.4·25-s − 135.·27-s + 177.·29-s − 79.7·31-s + 59.0·33-s + 88.3·35-s + 214.·37-s + 154.·39-s + 473.·41-s − 546.·43-s + 23.1·45-s + 82.8·47-s + 49·49-s − 91.2·51-s + 280.·53-s + 138.·55-s + ⋯
L(s)  = 1  + 1.03·3-s + 1.12·5-s + 0.377·7-s + 0.0679·9-s + 0.301·11-s + 0.613·13-s + 1.16·15-s − 0.242·17-s − 0.635·19-s + 0.390·21-s + 1.45·23-s + 0.275·25-s − 0.963·27-s + 1.13·29-s − 0.462·31-s + 0.311·33-s + 0.426·35-s + 0.953·37-s + 0.634·39-s + 1.80·41-s − 1.93·43-s + 0.0767·45-s + 0.257·47-s + 0.142·49-s − 0.250·51-s + 0.726·53-s + 0.340·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1904\)    =    \(2^{4} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(112.339\)
Root analytic conductor: \(10.5990\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1904,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.693829352\)
\(L(\frac12)\) \(\approx\) \(4.693829352\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 7T \)
17 \( 1 + 17T \)
good3 \( 1 - 5.36T + 27T^{2} \)
5 \( 1 - 12.6T + 125T^{2} \)
11 \( 1 - 10.9T + 1.33e3T^{2} \)
13 \( 1 - 28.7T + 2.19e3T^{2} \)
19 \( 1 + 52.6T + 6.85e3T^{2} \)
23 \( 1 - 160.T + 1.21e4T^{2} \)
29 \( 1 - 177.T + 2.43e4T^{2} \)
31 \( 1 + 79.7T + 2.97e4T^{2} \)
37 \( 1 - 214.T + 5.06e4T^{2} \)
41 \( 1 - 473.T + 6.89e4T^{2} \)
43 \( 1 + 546.T + 7.95e4T^{2} \)
47 \( 1 - 82.8T + 1.03e5T^{2} \)
53 \( 1 - 280.T + 1.48e5T^{2} \)
59 \( 1 - 735.T + 2.05e5T^{2} \)
61 \( 1 - 250.T + 2.26e5T^{2} \)
67 \( 1 + 406.T + 3.00e5T^{2} \)
71 \( 1 - 208.T + 3.57e5T^{2} \)
73 \( 1 + 169.T + 3.89e5T^{2} \)
79 \( 1 - 32.8T + 4.93e5T^{2} \)
83 \( 1 + 440.T + 5.71e5T^{2} \)
89 \( 1 - 1.31e3T + 7.04e5T^{2} \)
97 \( 1 + 561.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.795687195012769705188053276410, −8.373907039433031478102676138737, −7.34804045466139195122759442025, −6.44634070351632262227578395724, −5.72819290207289375425298555755, −4.76215408660541630799674783874, −3.73394854629441453777178030309, −2.72932699718495149346219153182, −2.04724346080965460500249775036, −1.00425627235343515037826009863, 1.00425627235343515037826009863, 2.04724346080965460500249775036, 2.72932699718495149346219153182, 3.73394854629441453777178030309, 4.76215408660541630799674783874, 5.72819290207289375425298555755, 6.44634070351632262227578395724, 7.34804045466139195122759442025, 8.373907039433031478102676138737, 8.795687195012769705188053276410

Graph of the $Z$-function along the critical line