| L(s) = 1 | + (−0.814 + 0.814i)3-s + (−1.28 + 1.28i)7-s + 1.67i·9-s − 0.814·11-s + (−2.02 + 2.02i)13-s + (−1.28 + 1.28i)17-s + (4.09 + 1.48i)19-s − 2.10i·21-s + (1.75 + 1.75i)23-s + (−3.80 − 3.80i)27-s − 1.12·29-s − 4.96i·31-s + (0.663 − 0.663i)33-s + (−3.80 − 3.80i)37-s − 3.30i·39-s + ⋯ |
| L(s) = 1 | + (−0.470 + 0.470i)3-s + (−0.487 + 0.487i)7-s + 0.557i·9-s − 0.245·11-s + (−0.561 + 0.561i)13-s + (−0.312 + 0.312i)17-s + (0.940 + 0.341i)19-s − 0.458i·21-s + (0.366 + 0.366i)23-s + (−0.732 − 0.732i)27-s − 0.209·29-s − 0.891i·31-s + (0.115 − 0.115i)33-s + (−0.625 − 0.625i)37-s − 0.528i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.842 + 0.538i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.842 + 0.538i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.2871584647\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2871584647\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-4.09 - 1.48i)T \) |
| good | 3 | \( 1 + (0.814 - 0.814i)T - 3iT^{2} \) |
| 7 | \( 1 + (1.28 - 1.28i)T - 7iT^{2} \) |
| 11 | \( 1 + 0.814T + 11T^{2} \) |
| 13 | \( 1 + (2.02 - 2.02i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.28 - 1.28i)T - 17iT^{2} \) |
| 23 | \( 1 + (-1.75 - 1.75i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.12T + 29T^{2} \) |
| 31 | \( 1 + 4.96iT - 31T^{2} \) |
| 37 | \( 1 + (3.80 + 3.80i)T + 37iT^{2} \) |
| 41 | \( 1 + 5.22iT - 41T^{2} \) |
| 43 | \( 1 + (1.22 + 1.22i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.40 - 4.40i)T - 47iT^{2} \) |
| 53 | \( 1 + (5.41 - 5.41i)T - 53iT^{2} \) |
| 59 | \( 1 - 3.99T + 59T^{2} \) |
| 61 | \( 1 + 6.46T + 61T^{2} \) |
| 67 | \( 1 + (6.22 + 6.22i)T + 67iT^{2} \) |
| 71 | \( 1 + 13.0iT - 71T^{2} \) |
| 73 | \( 1 + (0.985 + 0.985i)T + 73iT^{2} \) |
| 79 | \( 1 - 6.19T + 79T^{2} \) |
| 83 | \( 1 + (-5.56 - 5.56i)T + 83iT^{2} \) |
| 89 | \( 1 + 2.10T + 89T^{2} \) |
| 97 | \( 1 + (3.65 + 3.65i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.502768851682375985477705583582, −9.237498329901055214024191979450, −8.007513361392700782659549222778, −7.39940900107396156399769913216, −6.36493532936970412670977350737, −5.58434460207086666648270172324, −4.92297469796448504022425182049, −4.00093776119673174238767188046, −2.89690453489017642055446505467, −1.83569700705777405742554266892,
0.11556218155910306361324650147, 1.26500710779500440932323321547, 2.80852084700579260357831154123, 3.57738945464961719949439952165, 4.83759313599172028722550672108, 5.51240009440081319897621131776, 6.62109527054720830152216675100, 6.96039218621347652744443863606, 7.82151659084705293097276023770, 8.772160433065547148323849978678