| L(s) = 1 | + (−1.05 − 1.05i)3-s + (−1.45 − 1.45i)7-s − 0.769i·9-s + 4.10·11-s + (3.51 + 3.51i)13-s + (−1.45 − 1.45i)17-s + (0.485 + 4.33i)19-s + 3.07i·21-s + (2.62 − 2.62i)23-s + (−3.98 + 3.98i)27-s + 10.7·29-s + 8.61i·31-s + (−4.33 − 4.33i)33-s + (−3.98 + 3.98i)37-s − 7.43i·39-s + ⋯ |
| L(s) = 1 | + (−0.609 − 0.609i)3-s + (−0.549 − 0.549i)7-s − 0.256i·9-s + 1.23·11-s + (0.975 + 0.975i)13-s + (−0.352 − 0.352i)17-s + (0.111 + 0.993i)19-s + 0.670i·21-s + (0.547 − 0.547i)23-s + (−0.766 + 0.766i)27-s + 1.99·29-s + 1.54i·31-s + (−0.753 − 0.753i)33-s + (−0.654 + 0.654i)37-s − 1.19i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.534 + 0.844i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.534 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.451452289\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.451452289\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.485 - 4.33i)T \) |
| good | 3 | \( 1 + (1.05 + 1.05i)T + 3iT^{2} \) |
| 7 | \( 1 + (1.45 + 1.45i)T + 7iT^{2} \) |
| 11 | \( 1 - 4.10T + 11T^{2} \) |
| 13 | \( 1 + (-3.51 - 3.51i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.45 + 1.45i)T + 17iT^{2} \) |
| 23 | \( 1 + (-2.62 + 2.62i)T - 23iT^{2} \) |
| 29 | \( 1 - 10.7T + 29T^{2} \) |
| 31 | \( 1 - 8.61iT - 31T^{2} \) |
| 37 | \( 1 + (3.98 - 3.98i)T - 37iT^{2} \) |
| 41 | \( 1 + 10.2iT - 41T^{2} \) |
| 43 | \( 1 + (-1.22 + 1.22i)T - 43iT^{2} \) |
| 47 | \( 1 + (8.21 + 8.21i)T + 47iT^{2} \) |
| 53 | \( 1 + (-6.22 - 6.22i)T + 53iT^{2} \) |
| 59 | \( 1 + 5.17T + 59T^{2} \) |
| 61 | \( 1 - 10.9T + 61T^{2} \) |
| 67 | \( 1 + (-5.16 + 5.16i)T - 67iT^{2} \) |
| 71 | \( 1 - 3.93iT - 71T^{2} \) |
| 73 | \( 1 + (-8.64 + 8.64i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.55T + 79T^{2} \) |
| 83 | \( 1 + (-4.31 + 4.31i)T - 83iT^{2} \) |
| 89 | \( 1 + 3.07T + 89T^{2} \) |
| 97 | \( 1 + (-1.40 + 1.40i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.922273988066816667512939459589, −8.523773399351370385756423654834, −7.06982256347990713284911059161, −6.67170577857471361051681349225, −6.29407865015889885271128706996, −5.10070621941629191298236883476, −3.99010953342143137656936085687, −3.37336034253066280963645784220, −1.69462240309013351297121159805, −0.800851893538533654767466181019,
0.974214842709183581668809260454, 2.55652329173913937246811694107, 3.57675399845417952152452791909, 4.48147682689342093871367102616, 5.32316780187012507609993758289, 6.18391491976050947818727823914, 6.63905974244260547693058767689, 7.921130658873558043440928942239, 8.638806677839130855345965734864, 9.472432346929403964074434203465