Properties

Label 8-19e4-1.1-c5e4-0-0
Degree $8$
Conductor $130321$
Sign $1$
Analytic cond. $86.2296$
Root an. cond. $1.74564$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·2-s + 6·3-s + 25·4-s + 90·5-s + 54·6-s − 190·7-s − 189·8-s − 45·9-s + 810·10-s − 162·11-s + 150·12-s − 52·13-s − 1.71e3·14-s + 540·15-s − 2.68e3·16-s − 288·17-s − 405·18-s + 1.44e3·19-s + 2.25e3·20-s − 1.14e3·21-s − 1.45e3·22-s + 9.90e3·23-s − 1.13e3·24-s + 1.23e3·25-s − 468·26-s − 378·27-s − 4.75e3·28-s + ⋯
L(s)  = 1  + 1.59·2-s + 0.384·3-s + 0.781·4-s + 1.60·5-s + 0.612·6-s − 1.46·7-s − 1.04·8-s − 0.185·9-s + 2.56·10-s − 0.403·11-s + 0.300·12-s − 0.0853·13-s − 2.33·14-s + 0.619·15-s − 2.62·16-s − 0.241·17-s − 0.294·18-s + 0.917·19-s + 1.25·20-s − 0.564·21-s − 0.642·22-s + 3.90·23-s − 0.401·24-s + 0.393·25-s − 0.135·26-s − 0.0997·27-s − 1.14·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130321 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130321 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(130321\)    =    \(19^{4}\)
Sign: $1$
Analytic conductor: \(86.2296\)
Root analytic conductor: \(1.74564\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 130321,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.646699711\)
\(L(\frac12)\) \(\approx\) \(5.646699711\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad19$C_1$ \( ( 1 - p^{2} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 9 T + 7 p^{3} T^{2} - 45 p T^{3} + 99 p^{2} T^{4} - 45 p^{6} T^{5} + 7 p^{13} T^{6} - 9 p^{15} T^{7} + p^{20} T^{8} \)
3$S_4\times C_2$ \( 1 - 2 p T + p^{4} T^{2} - 14 p^{3} T^{3} - 680 p^{4} T^{4} - 14 p^{8} T^{5} + p^{14} T^{6} - 2 p^{16} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 18 p T + 6869 T^{2} - 416538 T^{3} + 19690752 T^{4} - 416538 p^{5} T^{5} + 6869 p^{10} T^{6} - 18 p^{16} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 190 T + 66448 T^{2} + 8943112 T^{3} + 1679700985 T^{4} + 8943112 p^{5} T^{5} + 66448 p^{10} T^{6} + 190 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 162 T + 222113 T^{2} - 25758 p^{2} T^{3} + 42691215120 T^{4} - 25758 p^{7} T^{5} + 222113 p^{10} T^{6} + 162 p^{15} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 4 p T + 1064095 T^{2} + 14286724 T^{3} + 533612850340 T^{4} + 14286724 p^{5} T^{5} + 1064095 p^{10} T^{6} + 4 p^{16} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 288 T + 3627026 T^{2} + 784929600 T^{3} + 6864987668115 T^{4} + 784929600 p^{5} T^{5} + 3627026 p^{10} T^{6} + 288 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 9900 T + 57265943 T^{2} - 221115039804 T^{3} + 28148059433280 p T^{4} - 221115039804 p^{5} T^{5} + 57265943 p^{10} T^{6} - 9900 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 144 p T + 71351819 T^{2} - 225624519972 T^{3} + 2142003065290872 T^{4} - 225624519972 p^{5} T^{5} + 71351819 p^{10} T^{6} - 144 p^{16} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 13580 T + 151302028 T^{2} - 1165085434268 T^{3} + 7018944017198182 T^{4} - 1165085434268 p^{5} T^{5} + 151302028 p^{10} T^{6} - 13580 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 1172 T + 102002164 T^{2} - 226575791900 T^{3} + 10894959511730950 T^{4} - 226575791900 p^{5} T^{5} + 102002164 p^{10} T^{6} - 1172 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 9540 T + 376390664 T^{2} - 2847719292012 T^{3} + 61182245632018158 T^{4} - 2847719292012 p^{5} T^{5} + 376390664 p^{10} T^{6} - 9540 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 13370 T + 349919077 T^{2} - 4778978614598 T^{3} + 72883448709335740 T^{4} - 4778978614598 p^{5} T^{5} + 349919077 p^{10} T^{6} - 13370 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 28098 T + 933909509 T^{2} - 17207037562194 T^{3} + 322234360595690004 T^{4} - 17207037562194 p^{5} T^{5} + 933909509 p^{10} T^{6} - 28098 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 34740 T + 1456787447 T^{2} - 41166456993684 T^{3} + 882183409440634596 T^{4} - 41166456993684 p^{5} T^{5} + 1456787447 p^{10} T^{6} - 34740 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 9702 T + 1371797513 T^{2} - 23993577393858 T^{3} + 1136689473043298808 T^{4} - 23993577393858 p^{5} T^{5} + 1371797513 p^{10} T^{6} - 9702 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 37978 T + 3346471921 T^{2} + 91584473440102 T^{3} + 4216005782131730548 T^{4} + 91584473440102 p^{5} T^{5} + 3346471921 p^{10} T^{6} + 37978 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 2974 T + 2000657221 T^{2} + 3890527525654 T^{3} + 3749434838871432508 T^{4} + 3890527525654 p^{5} T^{5} + 2000657221 p^{10} T^{6} + 2974 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 32220 T + 6498859196 T^{2} - 177355735093404 T^{3} + 16942037860730005206 T^{4} - 177355735093404 p^{5} T^{5} + 6498859196 p^{10} T^{6} - 32220 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 86908 T + 10474114474 T^{2} + 556957254465808 T^{3} + 34844122383039134803 T^{4} + 556957254465808 p^{5} T^{5} + 10474114474 p^{10} T^{6} + 86908 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 165736 T + 18366592648 T^{2} + 1437704142533512 T^{3} + 92025432287503929646 T^{4} + 1437704142533512 p^{5} T^{5} + 18366592648 p^{10} T^{6} + 165736 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 146448 T + 19894053800 T^{2} + 1704035844125424 T^{3} + \)\(12\!\cdots\!86\)\( T^{4} + 1704035844125424 p^{5} T^{5} + 19894053800 p^{10} T^{6} + 146448 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 26604 T + 19304901620 T^{2} + 380043966688740 T^{3} + \)\(15\!\cdots\!30\)\( T^{4} + 380043966688740 p^{5} T^{5} + 19304901620 p^{10} T^{6} + 26604 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 313820 T + 64410248872 T^{2} - 92585510399444 p T^{3} + \)\(95\!\cdots\!22\)\( T^{4} - 92585510399444 p^{6} T^{5} + 64410248872 p^{10} T^{6} - 313820 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96687291652104958723434682173, −12.86651441959391853251228096990, −12.67648076189829934273544966978, −12.05032189509184792926748834129, −11.53605699533463508928601012899, −11.46243338453512678268398738345, −10.72770315762460556906986048843, −10.25509632188816209945708433774, −9.982310217670635337506473182547, −9.522133389942607771678936063543, −9.175710294921058131929316016309, −8.889180853001673413081094775854, −8.642038056141995968441428327991, −7.67599878812951139552899366069, −6.98905513218100810884997749583, −6.80771923333134846063271359997, −6.12505511149204918988044270822, −5.89704166949710776597312157659, −5.45686701406109831448983355719, −4.63244275905827936633494839423, −4.55914218653652125256737981383, −3.25129247653077016924512970485, −2.79576152434414397203283737437, −2.71504287804881395892818353951, −0.888101548566075042548594271563, 0.888101548566075042548594271563, 2.71504287804881395892818353951, 2.79576152434414397203283737437, 3.25129247653077016924512970485, 4.55914218653652125256737981383, 4.63244275905827936633494839423, 5.45686701406109831448983355719, 5.89704166949710776597312157659, 6.12505511149204918988044270822, 6.80771923333134846063271359997, 6.98905513218100810884997749583, 7.67599878812951139552899366069, 8.642038056141995968441428327991, 8.889180853001673413081094775854, 9.175710294921058131929316016309, 9.522133389942607771678936063543, 9.982310217670635337506473182547, 10.25509632188816209945708433774, 10.72770315762460556906986048843, 11.46243338453512678268398738345, 11.53605699533463508928601012899, 12.05032189509184792926748834129, 12.67648076189829934273544966978, 12.86651441959391853251228096990, 12.96687291652104958723434682173

Graph of the $Z$-function along the critical line