Properties

Label 2-19-19.11-c9-0-1
Degree $2$
Conductor $19$
Sign $-0.959 + 0.283i$
Analytic cond. $9.78568$
Root an. cond. $3.12820$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.32 − 5.76i)2-s + (−131. + 227. i)3-s + (233. + 405. i)4-s + (−77.5 + 134. i)5-s + (873. + 1.51e3i)6-s − 3.03e3·7-s + 6.51e3·8-s + (−2.46e4 − 4.26e4i)9-s + (515. + 893. i)10-s − 8.23e3·11-s − 1.22e5·12-s + (3.01e4 + 5.21e4i)13-s + (−1.00e4 + 1.74e4i)14-s + (−2.03e4 − 3.52e4i)15-s + (−9.80e4 + 1.69e5i)16-s + (3.65e3 − 6.32e3i)17-s + ⋯
L(s)  = 1  + (0.146 − 0.254i)2-s + (−0.935 + 1.62i)3-s + (0.456 + 0.791i)4-s + (−0.0554 + 0.0961i)5-s + (0.275 + 0.476i)6-s − 0.477·7-s + 0.562·8-s + (−1.25 − 2.16i)9-s + (0.0163 + 0.0282i)10-s − 0.169·11-s − 1.70·12-s + (0.292 + 0.506i)13-s + (−0.0702 + 0.121i)14-s + (−0.103 − 0.179i)15-s + (−0.374 + 0.647i)16-s + (0.0106 − 0.0183i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.959 + 0.283i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.959 + 0.283i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19\)
Sign: $-0.959 + 0.283i$
Analytic conductor: \(9.78568\)
Root analytic conductor: \(3.12820\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{19} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 19,\ (\ :9/2),\ -0.959 + 0.283i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.113514 - 0.785349i\)
\(L(\frac12)\) \(\approx\) \(0.113514 - 0.785349i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 + (3.19e5 + 4.69e5i)T \)
good2 \( 1 + (-3.32 + 5.76i)T + (-256 - 443. i)T^{2} \)
3 \( 1 + (131. - 227. i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (77.5 - 134. i)T + (-9.76e5 - 1.69e6i)T^{2} \)
7 \( 1 + 3.03e3T + 4.03e7T^{2} \)
11 \( 1 + 8.23e3T + 2.35e9T^{2} \)
13 \( 1 + (-3.01e4 - 5.21e4i)T + (-5.30e9 + 9.18e9i)T^{2} \)
17 \( 1 + (-3.65e3 + 6.32e3i)T + (-5.92e10 - 1.02e11i)T^{2} \)
23 \( 1 + (8.97e5 + 1.55e6i)T + (-9.00e11 + 1.55e12i)T^{2} \)
29 \( 1 + (-3.22e6 - 5.59e6i)T + (-7.25e12 + 1.25e13i)T^{2} \)
31 \( 1 + 8.52e6T + 2.64e13T^{2} \)
37 \( 1 - 3.89e6T + 1.29e14T^{2} \)
41 \( 1 + (7.18e6 - 1.24e7i)T + (-1.63e14 - 2.83e14i)T^{2} \)
43 \( 1 + (1.07e7 - 1.86e7i)T + (-2.51e14 - 4.35e14i)T^{2} \)
47 \( 1 + (-1.20e7 - 2.09e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (3.12e7 + 5.41e7i)T + (-1.64e15 + 2.85e15i)T^{2} \)
59 \( 1 + (4.03e7 - 6.99e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (-7.77e7 - 1.34e8i)T + (-5.84e15 + 1.01e16i)T^{2} \)
67 \( 1 + (9.84e7 + 1.70e8i)T + (-1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 + (-4.29e7 + 7.43e7i)T + (-2.29e16 - 3.97e16i)T^{2} \)
73 \( 1 + (9.37e7 - 1.62e8i)T + (-2.94e16 - 5.09e16i)T^{2} \)
79 \( 1 + (-2.10e8 + 3.64e8i)T + (-5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 - 2.50e7T + 1.86e17T^{2} \)
89 \( 1 + (-4.65e8 - 8.05e8i)T + (-1.75e17 + 3.03e17i)T^{2} \)
97 \( 1 + (-4.18e8 + 7.25e8i)T + (-3.80e17 - 6.58e17i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.53108404313968236935500768726, −16.21333333399322198116262480320, −14.84322137277971638873110169878, −12.69774325937769170462943863714, −11.37632705761590030428977476802, −10.53765458462290896446264284161, −8.978254419254704265408077729039, −6.53750554175202214724610039065, −4.64758719364259103901930453070, −3.29252239885725759944157340442, 0.38644760580705369382800888892, 1.89338289435874851822627367112, 5.58378262998705292878041954123, 6.49445031064131494593056833956, 7.81495078155235001790324971953, 10.43152600753872464408813991615, 11.73433103800588592149413834762, 12.91477010620395747302836113812, 14.05666142302846016020717339352, 15.82627750452006147009296387262

Graph of the $Z$-function along the critical line