L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (1.00 − 1.99i)5-s + (−2.07 + 1.64i)7-s + 0.999·8-s + (−2.23 + 0.124i)10-s + (1.44 − 0.832i)11-s + (1.04 − 1.81i)13-s + (2.45 + 0.977i)14-s + (−0.5 − 0.866i)16-s − 7.45i·17-s + 4.66i·19-s + (1.22 + 1.87i)20-s + (−1.44 − 0.832i)22-s + (−2.82 + 4.89i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.450 − 0.892i)5-s + (−0.784 + 0.619i)7-s + 0.353·8-s + (−0.706 + 0.0394i)10-s + (0.434 − 0.250i)11-s + (0.290 − 0.503i)13-s + (0.657 + 0.261i)14-s + (−0.125 − 0.216i)16-s − 1.80i·17-s + 1.06i·19-s + (0.273 + 0.418i)20-s + (−0.307 − 0.177i)22-s + (−0.589 + 1.02i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1890 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.878 + 0.477i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1890 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.878 + 0.477i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.007911014\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.007911014\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.00 + 1.99i)T \) |
| 7 | \( 1 + (2.07 - 1.64i)T \) |
good | 11 | \( 1 + (-1.44 + 0.832i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.04 + 1.81i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 7.45iT - 17T^{2} \) |
| 19 | \( 1 - 4.66iT - 19T^{2} \) |
| 23 | \( 1 + (2.82 - 4.89i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.10 + 2.37i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.73 - 1.00i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4.86iT - 37T^{2} \) |
| 41 | \( 1 + (-4.07 + 7.05i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.25 + 1.30i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (8.90 - 5.13i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 13.8T + 53T^{2} \) |
| 59 | \( 1 + (-0.0862 + 0.149i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.17 + 2.98i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.70 + 2.71i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12.0iT - 71T^{2} \) |
| 73 | \( 1 - 4.79T + 73T^{2} \) |
| 79 | \( 1 + (6.30 + 10.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.24 + 1.29i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 11.2T + 89T^{2} \) |
| 97 | \( 1 + (-4.73 - 8.19i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.215262880753903733879435472606, −8.293844926720708929815789982170, −7.57211042836310819632478522735, −6.34399673186259581767800590447, −5.66686522352312443672343123261, −4.80484455978086626260072546986, −3.67517700973229900973322109158, −2.80994483177969262280932594915, −1.68076904927100001056859765163, −0.43043126269365501877206842611,
1.39572853489826057234454051162, 2.70772999736752368421163670741, 3.81154648739988189936452403357, 4.62791337747764427681973638907, 6.02224798954763949988594246729, 6.52656362854287787588016681154, 6.88374640764767973343583873522, 7.981675276633850064770721566169, 8.703532153136559755185253229684, 9.679430299567629682288168977167