Properties

Label 2-1881-1.1-c1-0-64
Degree $2$
Conductor $1881$
Sign $1$
Analytic cond. $15.0198$
Root an. cond. $3.87554$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.78·2-s + 5.74·4-s + 2.97·5-s − 1.34·7-s + 10.4·8-s + 8.26·10-s + 11-s − 3.44·13-s − 3.74·14-s + 17.5·16-s − 4.36·17-s + 19-s + 17.0·20-s + 2.78·22-s − 8.16·23-s + 3.82·25-s − 9.59·26-s − 7.73·28-s + 1.36·29-s + 2.69·31-s + 27.9·32-s − 12.1·34-s − 3.99·35-s − 1.17·37-s + 2.78·38-s + 30.9·40-s + 3.36·41-s + ⋯
L(s)  = 1  + 1.96·2-s + 2.87·4-s + 1.32·5-s − 0.508·7-s + 3.68·8-s + 2.61·10-s + 0.301·11-s − 0.955·13-s − 1.00·14-s + 4.38·16-s − 1.05·17-s + 0.229·19-s + 3.81·20-s + 0.593·22-s − 1.70·23-s + 0.765·25-s − 1.88·26-s − 1.46·28-s + 0.252·29-s + 0.484·31-s + 4.93·32-s − 2.08·34-s − 0.675·35-s − 0.192·37-s + 0.451·38-s + 4.89·40-s + 0.525·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1881\)    =    \(3^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(15.0198\)
Root analytic conductor: \(3.87554\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1881,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.209029639\)
\(L(\frac12)\) \(\approx\) \(7.209029639\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 - 2.78T + 2T^{2} \)
5 \( 1 - 2.97T + 5T^{2} \)
7 \( 1 + 1.34T + 7T^{2} \)
13 \( 1 + 3.44T + 13T^{2} \)
17 \( 1 + 4.36T + 17T^{2} \)
23 \( 1 + 8.16T + 23T^{2} \)
29 \( 1 - 1.36T + 29T^{2} \)
31 \( 1 - 2.69T + 31T^{2} \)
37 \( 1 + 1.17T + 37T^{2} \)
41 \( 1 - 3.36T + 41T^{2} \)
43 \( 1 + 3.18T + 43T^{2} \)
47 \( 1 + 6.44T + 47T^{2} \)
53 \( 1 + 9.21T + 53T^{2} \)
59 \( 1 - 4.84T + 59T^{2} \)
61 \( 1 - 0.802T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 + 2.41T + 71T^{2} \)
73 \( 1 + 2.83T + 73T^{2} \)
79 \( 1 - 11.4T + 79T^{2} \)
83 \( 1 - 4.47T + 83T^{2} \)
89 \( 1 + 8.70T + 89T^{2} \)
97 \( 1 + 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.681251927315359466906468886322, −8.195878666714421716480301860343, −7.13293898248685562074901331292, −6.39824443019152864628303376290, −6.03173679912631214758456579772, −5.10946327475377384449589243192, −4.44853854768485588662607170174, −3.41096969379596577259637059323, −2.42392053261770673650481379131, −1.83299889348916415789579579287, 1.83299889348916415789579579287, 2.42392053261770673650481379131, 3.41096969379596577259637059323, 4.44853854768485588662607170174, 5.10946327475377384449589243192, 6.03173679912631214758456579772, 6.39824443019152864628303376290, 7.13293898248685562074901331292, 8.195878666714421716480301860343, 9.681251927315359466906468886322

Graph of the $Z$-function along the critical line