Properties

Label 2-1875-5.4-c1-0-23
Degree $2$
Conductor $1875$
Sign $i$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.70i·2-s + i·3-s − 5.32·4-s + 2.70·6-s − 0.470i·7-s + 8.99i·8-s − 9-s − 3.18·11-s − 5.32i·12-s + 0.563i·13-s − 1.27·14-s + 13.7·16-s + 1.70i·17-s + 2.70i·18-s − 3.74·19-s + ⋯
L(s)  = 1  − 1.91i·2-s + 0.577i·3-s − 2.66·4-s + 1.10·6-s − 0.177i·7-s + 3.18i·8-s − 0.333·9-s − 0.959·11-s − 1.53i·12-s + 0.156i·13-s − 0.340·14-s + 3.42·16-s + 0.413i·17-s + 0.637i·18-s − 0.858·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $i$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1875} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.119234401\)
\(L(\frac12)\) \(\approx\) \(1.119234401\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - iT \)
5 \( 1 \)
good2 \( 1 + 2.70iT - 2T^{2} \)
7 \( 1 + 0.470iT - 7T^{2} \)
11 \( 1 + 3.18T + 11T^{2} \)
13 \( 1 - 0.563iT - 13T^{2} \)
17 \( 1 - 1.70iT - 17T^{2} \)
19 \( 1 + 3.74T + 19T^{2} \)
23 \( 1 + 2.26iT - 23T^{2} \)
29 \( 1 - 8.32T + 29T^{2} \)
31 \( 1 - 5.43T + 31T^{2} \)
37 \( 1 + 1.02iT - 37T^{2} \)
41 \( 1 - 1.47T + 41T^{2} \)
43 \( 1 - 6.72iT - 43T^{2} \)
47 \( 1 - 4.43iT - 47T^{2} \)
53 \( 1 + 7.05iT - 53T^{2} \)
59 \( 1 - 12.8T + 59T^{2} \)
61 \( 1 - 0.126T + 61T^{2} \)
67 \( 1 - 2.79iT - 67T^{2} \)
71 \( 1 - 16.0T + 71T^{2} \)
73 \( 1 + 9.78iT - 73T^{2} \)
79 \( 1 - 4.75T + 79T^{2} \)
83 \( 1 - 11.6iT - 83T^{2} \)
89 \( 1 - 6.20T + 89T^{2} \)
97 \( 1 + 8.45iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.384347361487840104190313121346, −8.453237633482029913209405358619, −8.085645273909733472617790934098, −6.47188028752867345099420919894, −5.29281127613941927822881109047, −4.57739653919276624745569580049, −3.92630436190447261774779946415, −2.88785266468315473259752765134, −2.23300136913200365893436803489, −0.77243789899780720746414981371, 0.65058531952741792479626995901, 2.60492746598672277963673600137, 3.98513604252989161359989192164, 4.99171367951153536567411634937, 5.54812504205790751245977692407, 6.44383602802573873364623514723, 6.97126157347769240396266019400, 7.82398599252505670838205864053, 8.320421453113560939324233148130, 8.948375695091865470263843323128

Graph of the $Z$-function along the critical line