Properties

Label 2-1872-1.1-c3-0-36
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.38·5-s + 3.38·7-s + 68.9·11-s + 13·13-s + 9.52·17-s − 133.·19-s + 196.·23-s − 96.0·25-s + 4.56·29-s + 254.·31-s + 18.1·35-s + 246.·37-s − 166.·41-s + 422.·43-s + 88.3·47-s − 331.·49-s − 226.·53-s + 370.·55-s + 477.·59-s − 13.2·61-s + 69.9·65-s − 6.99·67-s − 195.·71-s − 652.·73-s + 232.·77-s − 536.·79-s − 1.24e3·83-s + ⋯
L(s)  = 1  + 0.481·5-s + 0.182·7-s + 1.88·11-s + 0.277·13-s + 0.135·17-s − 1.60·19-s + 1.78·23-s − 0.768·25-s + 0.0292·29-s + 1.47·31-s + 0.0878·35-s + 1.09·37-s − 0.633·41-s + 1.49·43-s + 0.274·47-s − 0.966·49-s − 0.587·53-s + 0.908·55-s + 1.05·59-s − 0.0277·61-s + 0.133·65-s − 0.0127·67-s − 0.326·71-s − 1.04·73-s + 0.344·77-s − 0.764·79-s − 1.65·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.074476448\)
\(L(\frac12)\) \(\approx\) \(3.074476448\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 13T \)
good5 \( 1 - 5.38T + 125T^{2} \)
7 \( 1 - 3.38T + 343T^{2} \)
11 \( 1 - 68.9T + 1.33e3T^{2} \)
17 \( 1 - 9.52T + 4.91e3T^{2} \)
19 \( 1 + 133.T + 6.85e3T^{2} \)
23 \( 1 - 196.T + 1.21e4T^{2} \)
29 \( 1 - 4.56T + 2.43e4T^{2} \)
31 \( 1 - 254.T + 2.97e4T^{2} \)
37 \( 1 - 246.T + 5.06e4T^{2} \)
41 \( 1 + 166.T + 6.89e4T^{2} \)
43 \( 1 - 422.T + 7.95e4T^{2} \)
47 \( 1 - 88.3T + 1.03e5T^{2} \)
53 \( 1 + 226.T + 1.48e5T^{2} \)
59 \( 1 - 477.T + 2.05e5T^{2} \)
61 \( 1 + 13.2T + 2.26e5T^{2} \)
67 \( 1 + 6.99T + 3.00e5T^{2} \)
71 \( 1 + 195.T + 3.57e5T^{2} \)
73 \( 1 + 652.T + 3.89e5T^{2} \)
79 \( 1 + 536.T + 4.93e5T^{2} \)
83 \( 1 + 1.24e3T + 5.71e5T^{2} \)
89 \( 1 - 1.01e3T + 7.04e5T^{2} \)
97 \( 1 + 370.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.912648666238608395715275536248, −8.281073546339059322219168207294, −7.12739095616712879146210117513, −6.42627984549524220529400092021, −5.89232823700541636274441888206, −4.62262067871413703320465491538, −4.03833329328810967555860041410, −2.88293077683429334838876597402, −1.74138147313860836409829207790, −0.874831035983803976234536379550, 0.874831035983803976234536379550, 1.74138147313860836409829207790, 2.88293077683429334838876597402, 4.03833329328810967555860041410, 4.62262067871413703320465491538, 5.89232823700541636274441888206, 6.42627984549524220529400092021, 7.12739095616712879146210117513, 8.281073546339059322219168207294, 8.912648666238608395715275536248

Graph of the $Z$-function along the critical line