Properties

Label 2-1872-1.1-c3-0-65
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.29·5-s − 5.87·7-s − 51.1·11-s − 13·13-s + 73.7·17-s − 59.9·19-s + 69.8·23-s − 71.8·25-s + 294.·29-s + 334.·31-s − 42.8·35-s + 261.·37-s − 222.·41-s − 79.2·43-s − 584.·47-s − 308.·49-s − 465.·53-s − 373.·55-s − 530.·59-s + 548.·61-s − 94.7·65-s + 384.·67-s − 307.·71-s − 844.·73-s + 300.·77-s − 30.1·79-s + 19.5·83-s + ⋯
L(s)  = 1  + 0.652·5-s − 0.317·7-s − 1.40·11-s − 0.277·13-s + 1.05·17-s − 0.723·19-s + 0.633·23-s − 0.574·25-s + 1.88·29-s + 1.93·31-s − 0.206·35-s + 1.16·37-s − 0.848·41-s − 0.281·43-s − 1.81·47-s − 0.899·49-s − 1.20·53-s − 0.914·55-s − 1.16·59-s + 1.15·61-s − 0.180·65-s + 0.701·67-s − 0.513·71-s − 1.35·73-s + 0.444·77-s − 0.0429·79-s + 0.0258·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + 13T \)
good5 \( 1 - 7.29T + 125T^{2} \)
7 \( 1 + 5.87T + 343T^{2} \)
11 \( 1 + 51.1T + 1.33e3T^{2} \)
17 \( 1 - 73.7T + 4.91e3T^{2} \)
19 \( 1 + 59.9T + 6.85e3T^{2} \)
23 \( 1 - 69.8T + 1.21e4T^{2} \)
29 \( 1 - 294.T + 2.43e4T^{2} \)
31 \( 1 - 334.T + 2.97e4T^{2} \)
37 \( 1 - 261.T + 5.06e4T^{2} \)
41 \( 1 + 222.T + 6.89e4T^{2} \)
43 \( 1 + 79.2T + 7.95e4T^{2} \)
47 \( 1 + 584.T + 1.03e5T^{2} \)
53 \( 1 + 465.T + 1.48e5T^{2} \)
59 \( 1 + 530.T + 2.05e5T^{2} \)
61 \( 1 - 548.T + 2.26e5T^{2} \)
67 \( 1 - 384.T + 3.00e5T^{2} \)
71 \( 1 + 307.T + 3.57e5T^{2} \)
73 \( 1 + 844.T + 3.89e5T^{2} \)
79 \( 1 + 30.1T + 4.93e5T^{2} \)
83 \( 1 - 19.5T + 5.71e5T^{2} \)
89 \( 1 - 513.T + 7.04e5T^{2} \)
97 \( 1 - 787.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.164890316442592924970392597251, −8.030058552080768642537252782994, −6.71003736748643046145230469162, −6.16397913383407530949936006017, −5.17585544328762991393188149535, −4.58520431917712232589822190787, −3.11533308893695196921795150548, −2.57113665196715262395150298148, −1.29144325965472644963121988852, 0, 1.29144325965472644963121988852, 2.57113665196715262395150298148, 3.11533308893695196921795150548, 4.58520431917712232589822190787, 5.17585544328762991393188149535, 6.16397913383407530949936006017, 6.71003736748643046145230469162, 8.030058552080768642537252782994, 8.164890316442592924970392597251

Graph of the $Z$-function along the critical line