Properties

Label 2-1872-13.12-c1-0-33
Degree $2$
Conductor $1872$
Sign $-0.832 - 0.554i$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·5-s − 2i·7-s + 4i·11-s + (−3 − 2i)13-s − 6·17-s + 2i·19-s − 4·23-s + 25-s − 6·29-s + 2i·31-s − 4·35-s − 8i·37-s + 6i·41-s + 4·43-s + 8i·47-s + ⋯
L(s)  = 1  − 0.894i·5-s − 0.755i·7-s + 1.20i·11-s + (−0.832 − 0.554i)13-s − 1.45·17-s + 0.458i·19-s − 0.834·23-s + 0.200·25-s − 1.11·29-s + 0.359i·31-s − 0.676·35-s − 1.31i·37-s + 0.937i·41-s + 0.609·43-s + 1.16i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-0.832 - 0.554i$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1872} (1585, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ -0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + (3 + 2i)T \)
good5 \( 1 + 2iT - 5T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 - 4iT - 11T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 - 2iT - 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 2iT - 31T^{2} \)
37 \( 1 + 8iT - 37T^{2} \)
41 \( 1 - 6iT - 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 8iT - 59T^{2} \)
61 \( 1 + 14T + 61T^{2} \)
67 \( 1 - 14iT - 67T^{2} \)
71 \( 1 + 12iT - 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 - 6iT - 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.947086615030263887080745515539, −7.76440096640186285447361573817, −7.42494851245480490656302833471, −6.42204269132684682157980579314, −5.38645716926003710354156963826, −4.51876373753409751902153534296, −4.07584310642582130621342169523, −2.55664207636096127053931491102, −1.49833013967510971932793711274, 0, 2.06805519646484852845393323924, 2.77838441160495111772534318488, 3.79938643644751388869568428137, 4.86332721033446663525706689525, 5.83403943334061435692279578287, 6.53375458259513312763647170135, 7.20558112674778039172295685694, 8.215251931278956167407195435817, 8.952017119313020679849263325568

Graph of the $Z$-function along the critical line