Properties

Label 2-1870-1.1-c3-0-152
Degree $2$
Conductor $1870$
Sign $-1$
Analytic cond. $110.333$
Root an. cond. $10.5039$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 5.70·3-s + 4·4-s − 5·5-s + 11.4·6-s + 7.84·7-s + 8·8-s + 5.50·9-s − 10·10-s − 11·11-s + 22.8·12-s − 49.1·13-s + 15.6·14-s − 28.5·15-s + 16·16-s − 17·17-s + 11.0·18-s − 137.·19-s − 20·20-s + 44.7·21-s − 22·22-s + 53.8·23-s + 45.6·24-s + 25·25-s − 98.3·26-s − 122.·27-s + 31.3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.09·3-s + 0.5·4-s − 0.447·5-s + 0.775·6-s + 0.423·7-s + 0.353·8-s + 0.203·9-s − 0.316·10-s − 0.301·11-s + 0.548·12-s − 1.04·13-s + 0.299·14-s − 0.490·15-s + 0.250·16-s − 0.242·17-s + 0.144·18-s − 1.66·19-s − 0.223·20-s + 0.464·21-s − 0.213·22-s + 0.487·23-s + 0.387·24-s + 0.200·25-s − 0.741·26-s − 0.873·27-s + 0.211·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1870\)    =    \(2 \cdot 5 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(110.333\)
Root analytic conductor: \(10.5039\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1870,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 + 5T \)
11 \( 1 + 11T \)
17 \( 1 + 17T \)
good3 \( 1 - 5.70T + 27T^{2} \)
7 \( 1 - 7.84T + 343T^{2} \)
13 \( 1 + 49.1T + 2.19e3T^{2} \)
19 \( 1 + 137.T + 6.85e3T^{2} \)
23 \( 1 - 53.8T + 1.21e4T^{2} \)
29 \( 1 - 240.T + 2.43e4T^{2} \)
31 \( 1 - 138.T + 2.97e4T^{2} \)
37 \( 1 + 96.2T + 5.06e4T^{2} \)
41 \( 1 + 371.T + 6.89e4T^{2} \)
43 \( 1 + 242.T + 7.95e4T^{2} \)
47 \( 1 - 93.6T + 1.03e5T^{2} \)
53 \( 1 - 422.T + 1.48e5T^{2} \)
59 \( 1 + 653.T + 2.05e5T^{2} \)
61 \( 1 + 429.T + 2.26e5T^{2} \)
67 \( 1 + 863.T + 3.00e5T^{2} \)
71 \( 1 + 787.T + 3.57e5T^{2} \)
73 \( 1 + 898.T + 3.89e5T^{2} \)
79 \( 1 - 388.T + 4.93e5T^{2} \)
83 \( 1 + 718.T + 5.71e5T^{2} \)
89 \( 1 - 1.33e3T + 7.04e5T^{2} \)
97 \( 1 - 1.66e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.441850188767817245920083684070, −7.76616853478208345556367499588, −6.97586316781732501395377203783, −6.11789441239740174704509970545, −4.82518050967443665318773262729, −4.46831110176123604631740671539, −3.27042890004514714045232248540, −2.64727118811246982952582643496, −1.74608659198008072340169251895, 0, 1.74608659198008072340169251895, 2.64727118811246982952582643496, 3.27042890004514714045232248540, 4.46831110176123604631740671539, 4.82518050967443665318773262729, 6.11789441239740174704509970545, 6.97586316781732501395377203783, 7.76616853478208345556367499588, 8.441850188767817245920083684070

Graph of the $Z$-function along the critical line