Properties

Label 2-1870-1.1-c3-0-100
Degree $2$
Conductor $1870$
Sign $-1$
Analytic cond. $110.333$
Root an. cond. $10.5039$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4.75·3-s + 4·4-s − 5·5-s − 9.50·6-s − 10.3·7-s + 8·8-s − 4.42·9-s − 10·10-s − 11·11-s − 19.0·12-s + 25.6·13-s − 20.7·14-s + 23.7·15-s + 16·16-s − 17·17-s − 8.85·18-s + 33.7·19-s − 20·20-s + 49.2·21-s − 22·22-s + 156.·23-s − 38.0·24-s + 25·25-s + 51.2·26-s + 149.·27-s − 41.4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.914·3-s + 0.5·4-s − 0.447·5-s − 0.646·6-s − 0.559·7-s + 0.353·8-s − 0.164·9-s − 0.316·10-s − 0.301·11-s − 0.457·12-s + 0.546·13-s − 0.395·14-s + 0.408·15-s + 0.250·16-s − 0.242·17-s − 0.115·18-s + 0.407·19-s − 0.223·20-s + 0.511·21-s − 0.213·22-s + 1.41·23-s − 0.323·24-s + 0.200·25-s + 0.386·26-s + 1.06·27-s − 0.279·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1870\)    =    \(2 \cdot 5 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(110.333\)
Root analytic conductor: \(10.5039\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1870,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 + 5T \)
11 \( 1 + 11T \)
17 \( 1 + 17T \)
good3 \( 1 + 4.75T + 27T^{2} \)
7 \( 1 + 10.3T + 343T^{2} \)
13 \( 1 - 25.6T + 2.19e3T^{2} \)
19 \( 1 - 33.7T + 6.85e3T^{2} \)
23 \( 1 - 156.T + 1.21e4T^{2} \)
29 \( 1 - 80.3T + 2.43e4T^{2} \)
31 \( 1 + 253.T + 2.97e4T^{2} \)
37 \( 1 - 49.1T + 5.06e4T^{2} \)
41 \( 1 - 342.T + 6.89e4T^{2} \)
43 \( 1 - 141.T + 7.95e4T^{2} \)
47 \( 1 + 337.T + 1.03e5T^{2} \)
53 \( 1 + 253.T + 1.48e5T^{2} \)
59 \( 1 - 578.T + 2.05e5T^{2} \)
61 \( 1 - 779.T + 2.26e5T^{2} \)
67 \( 1 + 703.T + 3.00e5T^{2} \)
71 \( 1 + 756.T + 3.57e5T^{2} \)
73 \( 1 + 898.T + 3.89e5T^{2} \)
79 \( 1 - 869.T + 4.93e5T^{2} \)
83 \( 1 + 309.T + 5.71e5T^{2} \)
89 \( 1 + 771.T + 7.04e5T^{2} \)
97 \( 1 + 1.07e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.444836214908043689788540107244, −7.39861678509535192624808524917, −6.73301543828722361319978940267, −5.94659069293987232559444478083, −5.30139469865999312011961027850, −4.48973415179430688352818949415, −3.46651049455714686873267577177, −2.69991783959220630057853449046, −1.13593608218800549213103286756, 0, 1.13593608218800549213103286756, 2.69991783959220630057853449046, 3.46651049455714686873267577177, 4.48973415179430688352818949415, 5.30139469865999312011961027850, 5.94659069293987232559444478083, 6.73301543828722361319978940267, 7.39861678509535192624808524917, 8.444836214908043689788540107244

Graph of the $Z$-function along the critical line