Properties

Label 2-1870-1.1-c3-0-113
Degree $2$
Conductor $1870$
Sign $-1$
Analytic cond. $110.333$
Root an. cond. $10.5039$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3.85·3-s + 4·4-s − 5·5-s − 7.70·6-s + 3.86·7-s − 8·8-s − 12.1·9-s + 10·10-s − 11·11-s + 15.4·12-s + 56.6·13-s − 7.72·14-s − 19.2·15-s + 16·16-s + 17·17-s + 24.3·18-s + 60.4·19-s − 20·20-s + 14.8·21-s + 22·22-s − 118.·23-s − 30.8·24-s + 25·25-s − 113.·26-s − 150.·27-s + 15.4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.741·3-s + 0.5·4-s − 0.447·5-s − 0.524·6-s + 0.208·7-s − 0.353·8-s − 0.450·9-s + 0.316·10-s − 0.301·11-s + 0.370·12-s + 1.20·13-s − 0.147·14-s − 0.331·15-s + 0.250·16-s + 0.242·17-s + 0.318·18-s + 0.729·19-s − 0.223·20-s + 0.154·21-s + 0.213·22-s − 1.07·23-s − 0.262·24-s + 0.200·25-s − 0.854·26-s − 1.07·27-s + 0.104·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1870\)    =    \(2 \cdot 5 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(110.333\)
Root analytic conductor: \(10.5039\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1870,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 + 5T \)
11 \( 1 + 11T \)
17 \( 1 - 17T \)
good3 \( 1 - 3.85T + 27T^{2} \)
7 \( 1 - 3.86T + 343T^{2} \)
13 \( 1 - 56.6T + 2.19e3T^{2} \)
19 \( 1 - 60.4T + 6.85e3T^{2} \)
23 \( 1 + 118.T + 1.21e4T^{2} \)
29 \( 1 + 29.6T + 2.43e4T^{2} \)
31 \( 1 + 188.T + 2.97e4T^{2} \)
37 \( 1 + 121.T + 5.06e4T^{2} \)
41 \( 1 - 390.T + 6.89e4T^{2} \)
43 \( 1 - 278.T + 7.95e4T^{2} \)
47 \( 1 - 32.7T + 1.03e5T^{2} \)
53 \( 1 + 23.3T + 1.48e5T^{2} \)
59 \( 1 + 361.T + 2.05e5T^{2} \)
61 \( 1 - 72.7T + 2.26e5T^{2} \)
67 \( 1 - 274.T + 3.00e5T^{2} \)
71 \( 1 - 1.02e3T + 3.57e5T^{2} \)
73 \( 1 + 500.T + 3.89e5T^{2} \)
79 \( 1 - 378.T + 4.93e5T^{2} \)
83 \( 1 + 462.T + 5.71e5T^{2} \)
89 \( 1 + 1.14e3T + 7.04e5T^{2} \)
97 \( 1 - 77.9T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.391873771483650905657054323239, −7.936047318045519203832649430440, −7.26644418856091095164662359299, −6.12149507410629862259488416863, −5.43508733902047434006740418973, −4.01814976285129970572729440703, −3.32630246797553209491978397961, −2.35052630956997585808666970258, −1.26729071320191914598449623710, 0, 1.26729071320191914598449623710, 2.35052630956997585808666970258, 3.32630246797553209491978397961, 4.01814976285129970572729440703, 5.43508733902047434006740418973, 6.12149507410629862259488416863, 7.26644418856091095164662359299, 7.936047318045519203832649430440, 8.391873771483650905657054323239

Graph of the $Z$-function along the critical line