Properties

Label 2-1870-1.1-c3-0-62
Degree $2$
Conductor $1870$
Sign $-1$
Analytic cond. $110.333$
Root an. cond. $10.5039$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 0.733·3-s + 4·4-s − 5·5-s + 1.46·6-s − 34.7·7-s − 8·8-s − 26.4·9-s + 10·10-s − 11·11-s − 2.93·12-s + 16.8·13-s + 69.5·14-s + 3.66·15-s + 16·16-s + 17·17-s + 52.9·18-s + 36.1·19-s − 20·20-s + 25.4·21-s + 22·22-s + 20.2·23-s + 5.86·24-s + 25·25-s − 33.7·26-s + 39.2·27-s − 139.·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.141·3-s + 0.5·4-s − 0.447·5-s + 0.0998·6-s − 1.87·7-s − 0.353·8-s − 0.980·9-s + 0.316·10-s − 0.301·11-s − 0.0705·12-s + 0.359·13-s + 1.32·14-s + 0.0631·15-s + 0.250·16-s + 0.242·17-s + 0.693·18-s + 0.436·19-s − 0.223·20-s + 0.264·21-s + 0.213·22-s + 0.183·23-s + 0.0499·24-s + 0.200·25-s − 0.254·26-s + 0.279·27-s − 0.938·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1870 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1870\)    =    \(2 \cdot 5 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(110.333\)
Root analytic conductor: \(10.5039\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1870,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 + 5T \)
11 \( 1 + 11T \)
17 \( 1 - 17T \)
good3 \( 1 + 0.733T + 27T^{2} \)
7 \( 1 + 34.7T + 343T^{2} \)
13 \( 1 - 16.8T + 2.19e3T^{2} \)
19 \( 1 - 36.1T + 6.85e3T^{2} \)
23 \( 1 - 20.2T + 1.21e4T^{2} \)
29 \( 1 + 135.T + 2.43e4T^{2} \)
31 \( 1 - 107.T + 2.97e4T^{2} \)
37 \( 1 - 89.7T + 5.06e4T^{2} \)
41 \( 1 - 287.T + 6.89e4T^{2} \)
43 \( 1 - 300.T + 7.95e4T^{2} \)
47 \( 1 - 395.T + 1.03e5T^{2} \)
53 \( 1 - 116.T + 1.48e5T^{2} \)
59 \( 1 + 232.T + 2.05e5T^{2} \)
61 \( 1 - 173.T + 2.26e5T^{2} \)
67 \( 1 - 363.T + 3.00e5T^{2} \)
71 \( 1 + 953.T + 3.57e5T^{2} \)
73 \( 1 + 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 1.16e3T + 4.93e5T^{2} \)
83 \( 1 - 301.T + 5.71e5T^{2} \)
89 \( 1 + 645.T + 7.04e5T^{2} \)
97 \( 1 + 471.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.687106407901957026749130772868, −7.64712629202305245234418945343, −7.04206161120397720804476936356, −6.02983831592130703145352743419, −5.70060267338899172251578793102, −4.12398287384639661020206207275, −3.15445946194705659966577601137, −2.61227224077902794225618062608, −0.841100996309118242017200659272, 0, 0.841100996309118242017200659272, 2.61227224077902794225618062608, 3.15445946194705659966577601137, 4.12398287384639661020206207275, 5.70060267338899172251578793102, 6.02983831592130703145352743419, 7.04206161120397720804476936356, 7.64712629202305245234418945343, 8.687106407901957026749130772868

Graph of the $Z$-function along the critical line