Properties

Label 2-187-1.1-c3-0-0
Degree $2$
Conductor $187$
Sign $1$
Analytic cond. $11.0333$
Root an. cond. $3.32164$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.10·2-s − 1.59·3-s + 8.81·4-s − 13.7·5-s + 6.52·6-s − 19.9·7-s − 3.35·8-s − 24.4·9-s + 56.3·10-s − 11·11-s − 14.0·12-s − 28.3·13-s + 81.8·14-s + 21.8·15-s − 56.7·16-s − 17·17-s + 100.·18-s − 103.·19-s − 121.·20-s + 31.7·21-s + 45.1·22-s − 49.0·23-s + 5.33·24-s + 63.5·25-s + 116.·26-s + 81.9·27-s − 175.·28-s + ⋯
L(s)  = 1  − 1.44·2-s − 0.306·3-s + 1.10·4-s − 1.22·5-s + 0.444·6-s − 1.07·7-s − 0.148·8-s − 0.906·9-s + 1.78·10-s − 0.301·11-s − 0.337·12-s − 0.604·13-s + 1.56·14-s + 0.376·15-s − 0.887·16-s − 0.242·17-s + 1.31·18-s − 1.24·19-s − 1.35·20-s + 0.330·21-s + 0.437·22-s − 0.444·23-s + 0.0453·24-s + 0.508·25-s + 0.875·26-s + 0.583·27-s − 1.18·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187\)    =    \(11 \cdot 17\)
Sign: $1$
Analytic conductor: \(11.0333\)
Root analytic conductor: \(3.32164\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1368775724\)
\(L(\frac12)\) \(\approx\) \(0.1368775724\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
17 \( 1 + 17T \)
good2 \( 1 + 4.10T + 8T^{2} \)
3 \( 1 + 1.59T + 27T^{2} \)
5 \( 1 + 13.7T + 125T^{2} \)
7 \( 1 + 19.9T + 343T^{2} \)
13 \( 1 + 28.3T + 2.19e3T^{2} \)
19 \( 1 + 103.T + 6.85e3T^{2} \)
23 \( 1 + 49.0T + 1.21e4T^{2} \)
29 \( 1 - 197.T + 2.43e4T^{2} \)
31 \( 1 - 18.1T + 2.97e4T^{2} \)
37 \( 1 + 12.4T + 5.06e4T^{2} \)
41 \( 1 - 54.4T + 6.89e4T^{2} \)
43 \( 1 - 251.T + 7.95e4T^{2} \)
47 \( 1 - 452.T + 1.03e5T^{2} \)
53 \( 1 + 134.T + 1.48e5T^{2} \)
59 \( 1 + 16.3T + 2.05e5T^{2} \)
61 \( 1 + 832.T + 2.26e5T^{2} \)
67 \( 1 - 301.T + 3.00e5T^{2} \)
71 \( 1 - 273.T + 3.57e5T^{2} \)
73 \( 1 + 486.T + 3.89e5T^{2} \)
79 \( 1 + 1.26e3T + 4.93e5T^{2} \)
83 \( 1 + 1.23e3T + 5.71e5T^{2} \)
89 \( 1 + 136.T + 7.04e5T^{2} \)
97 \( 1 - 1.15e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.86403824926670091693908677817, −10.91610960366904134674934289956, −10.14101109853644760849638368562, −8.988124630327702236331172238366, −8.229864942105545091832950417844, −7.27458337997508901275554771829, −6.20378500639740975847840199485, −4.36476721258282919093992055251, −2.72148471516971976610988405475, −0.33627014160597585055485161484, 0.33627014160597585055485161484, 2.72148471516971976610988405475, 4.36476721258282919093992055251, 6.20378500639740975847840199485, 7.27458337997508901275554771829, 8.229864942105545091832950417844, 8.988124630327702236331172238366, 10.14101109853644760849638368562, 10.91610960366904134674934289956, 11.86403824926670091693908677817

Graph of the $Z$-function along the critical line