L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)5-s + (1.87 − 3.24i)7-s + (−0.499 − 0.866i)9-s + (−2.24 − 3.89i)11-s + (2.50 + 4.33i)13-s − 0.999·15-s + (−1.17 + 2.02i)17-s + (3.50 − 6.07i)19-s + (−1.87 − 3.24i)21-s + 6.06·23-s + (−0.499 + 0.866i)25-s − 0.999·27-s − 8.35·29-s + (1.61 − 5.32i)31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.223 − 0.387i)5-s + (0.708 − 1.22i)7-s + (−0.166 − 0.288i)9-s + (−0.677 − 1.17i)11-s + (0.694 + 1.20i)13-s − 0.258·15-s + (−0.284 + 0.492i)17-s + (0.804 − 1.39i)19-s + (−0.408 − 0.708i)21-s + 1.26·23-s + (−0.0999 + 0.173i)25-s − 0.192·27-s − 1.55·29-s + (0.290 − 0.956i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.640 + 0.767i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.640 + 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.749928235\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.749928235\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-1.61 + 5.32i)T \) |
good | 7 | \( 1 + (-1.87 + 3.24i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.24 + 3.89i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.50 - 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.17 - 2.02i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.50 + 6.07i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 6.06T + 23T^{2} \) |
| 29 | \( 1 + 8.35T + 29T^{2} \) |
| 37 | \( 1 + (-0.873 + 1.51i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.94 - 3.37i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.931 + 1.61i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 3.40T + 47T^{2} \) |
| 53 | \( 1 + (2.90 + 5.03i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.05 - 7.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 13.3T + 61T^{2} \) |
| 67 | \( 1 + (1.34 + 2.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.96 + 5.14i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-8.20 - 14.2i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.16 - 7.21i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.16 + 3.74i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 13.5T + 89T^{2} \) |
| 97 | \( 1 - 4.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.904706769299123467472168107333, −8.091480931682487848482024259010, −7.45935454312569515987436335840, −6.77339303159649095576605325331, −5.76645365762442911298135567983, −4.74930275350126113196396250274, −3.97713408972867645139903902802, −2.99894734516263879892210494603, −1.61041966553173728845021799974, −0.63673578120553434146136664896,
1.68933925057077363732023412066, 2.77363253219300097283075040193, 3.50127211064877830272822943334, 4.84053574063122196040193332512, 5.30209491912078637966448466705, 6.16835479898998344244660638063, 7.57027276249759898737378311406, 7.80601006759255550022263508633, 8.820108531767840691659302398853, 9.416021665487119635657487174918