Properties

Label 2-1860-1860.1859-c0-0-0
Degree $2$
Conductor $1860$
Sign $1$
Analytic cond. $0.928260$
Root an. cond. $0.963462$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 12-s − 15-s + 16-s − 18-s + 20-s + 2·23-s + 24-s + 25-s − 27-s + 30-s − 31-s − 32-s + 36-s − 40-s + 45-s − 2·46-s − 48-s − 49-s − 50-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 12-s − 15-s + 16-s − 18-s + 20-s + 2·23-s + 24-s + 25-s − 27-s + 30-s − 31-s − 32-s + 36-s − 40-s + 45-s − 2·46-s − 48-s − 49-s − 50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1860\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(0.928260\)
Root analytic conductor: \(0.963462\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1860} (1859, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1860,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6751355645\)
\(L(\frac12)\) \(\approx\) \(0.6751355645\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
31 \( 1 + T \)
good7 \( 1 + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( 1 + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )^{2} \)
29 \( 1 + T^{2} \)
37 \( 1 + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( 1 + T^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( 1 + T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + T^{2} \)
79 \( ( 1 - T )^{2} \)
83 \( ( 1 - T )^{2} \)
89 \( 1 + T^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.413686380087340250337898507276, −8.961878643898988009518093885538, −7.79169520185332059722533843424, −6.93257982225243662865688566074, −6.43635886546139742682698002182, −5.55216903333981436184235212529, −4.89682525003054361210090925402, −3.32735351365026393663186551359, −2.09353453425380717254014201396, −1.06174209665756361827956558874, 1.06174209665756361827956558874, 2.09353453425380717254014201396, 3.32735351365026393663186551359, 4.89682525003054361210090925402, 5.55216903333981436184235212529, 6.43635886546139742682698002182, 6.93257982225243662865688566074, 7.79169520185332059722533843424, 8.961878643898988009518093885538, 9.413686380087340250337898507276

Graph of the $Z$-function along the critical line