Properties

Label 8-1860e4-1.1-c0e4-0-1
Degree $8$
Conductor $1.197\times 10^{13}$
Sign $1$
Analytic cond. $0.742472$
Root an. cond. $0.963462$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4·5-s − 6-s + 4·10-s − 4·15-s + 5·19-s + 3·23-s + 10·25-s + 4·30-s − 31-s + 32-s − 5·38-s − 3·46-s + 49-s − 10·50-s + 5·57-s + 62-s − 64-s + 3·69-s + 10·75-s + 2·79-s − 2·83-s − 93-s − 20·95-s + 96-s − 98-s + ⋯
L(s)  = 1  − 2-s + 3-s − 4·5-s − 6-s + 4·10-s − 4·15-s + 5·19-s + 3·23-s + 10·25-s + 4·30-s − 31-s + 32-s − 5·38-s − 3·46-s + 49-s − 10·50-s + 5·57-s + 62-s − 64-s + 3·69-s + 10·75-s + 2·79-s − 2·83-s − 93-s − 20·95-s + 96-s − 98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(0.742472\)
Root analytic conductor: \(0.963462\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5111042262\)
\(L(\frac12)\) \(\approx\) \(0.5111042262\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
3$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
5$C_1$ \( ( 1 + T )^{4} \)
31$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
good7$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
11$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
13$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
23$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
29$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
43$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
47$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
53$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
61$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
67$C_2$ \( ( 1 + T^{2} )^{4} \)
71$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
73$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
79$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
83$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
89$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
97$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.05233650206445582930015938585, −6.80625363589277479611478844496, −6.57621769153610561090583422930, −6.46186670530347118588049342567, −5.81127512649439998327069896776, −5.48750284093002915260974169871, −5.42868939354976063403352338767, −5.28894540769403650443196585783, −4.97655005481667650370630086224, −4.83404655929998743129222863774, −4.48428233879645075623191701894, −4.35711757772140610690028697234, −4.19117222202995620490057919495, −3.70491334451218341265604651568, −3.55078957551036625109132315300, −3.30891223862349533646683871086, −3.24364145005132855106014252961, −3.06760707477638920498439212994, −2.81769227945297205556446243812, −2.79535548866803986971743982040, −2.18009902994333449570581966654, −1.49575708439865911393809218343, −1.03902734516361877238058269078, −0.852103272735277286414273935796, −0.76428550921295347572565042270, 0.76428550921295347572565042270, 0.852103272735277286414273935796, 1.03902734516361877238058269078, 1.49575708439865911393809218343, 2.18009902994333449570581966654, 2.79535548866803986971743982040, 2.81769227945297205556446243812, 3.06760707477638920498439212994, 3.24364145005132855106014252961, 3.30891223862349533646683871086, 3.55078957551036625109132315300, 3.70491334451218341265604651568, 4.19117222202995620490057919495, 4.35711757772140610690028697234, 4.48428233879645075623191701894, 4.83404655929998743129222863774, 4.97655005481667650370630086224, 5.28894540769403650443196585783, 5.42868939354976063403352338767, 5.48750284093002915260974169871, 5.81127512649439998327069896776, 6.46186670530347118588049342567, 6.57621769153610561090583422930, 6.80625363589277479611478844496, 7.05233650206445582930015938585

Graph of the $Z$-function along the critical line