| L(s) = 1 | + (−0.305 − 0.176i)2-s + (2.52 + 0.676i)3-s + (−0.937 − 1.62i)4-s + (2.22 − 0.204i)5-s + (−0.652 − 0.652i)6-s + (−1.50 − 0.404i)7-s + 1.36i·8-s + (3.31 + 1.91i)9-s + (−0.716 − 0.330i)10-s − 2.57i·11-s + (−1.26 − 4.73i)12-s + (−4.41 + 2.54i)13-s + (0.389 + 0.389i)14-s + (5.76 + 0.989i)15-s + (−1.63 + 2.83i)16-s + (−0.342 + 0.593i)17-s + ⋯ |
| L(s) = 1 | + (−0.216 − 0.124i)2-s + (1.45 + 0.390i)3-s + (−0.468 − 0.812i)4-s + (0.995 − 0.0915i)5-s + (−0.266 − 0.266i)6-s + (−0.570 − 0.152i)7-s + 0.483i·8-s + (1.10 + 0.638i)9-s + (−0.226 − 0.104i)10-s − 0.775i·11-s + (−0.366 − 1.36i)12-s + (−1.22 + 0.706i)13-s + (0.104 + 0.104i)14-s + (1.48 + 0.255i)15-s + (−0.408 + 0.707i)16-s + (−0.0830 + 0.143i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 + 0.335i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.942 + 0.335i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.52414 - 0.263202i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.52414 - 0.263202i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (-2.22 + 0.204i)T \) |
| 37 | \( 1 + (-4.74 + 3.80i)T \) |
| good | 2 | \( 1 + (0.305 + 0.176i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-2.52 - 0.676i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (1.50 + 0.404i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + 2.57iT - 11T^{2} \) |
| 13 | \( 1 + (4.41 - 2.54i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.342 - 0.593i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.59 - 1.23i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 5.83iT - 23T^{2} \) |
| 29 | \( 1 + (4.71 + 4.71i)T + 29iT^{2} \) |
| 31 | \( 1 + (1.40 - 1.40i)T - 31iT^{2} \) |
| 41 | \( 1 + (6.82 - 3.94i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 2.28iT - 43T^{2} \) |
| 47 | \( 1 + (7.99 - 7.99i)T - 47iT^{2} \) |
| 53 | \( 1 + (-4.37 + 1.17i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.43 + 9.07i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (2.49 + 0.667i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-0.100 + 0.376i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.0695 - 0.120i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.70 + 6.70i)T - 73iT^{2} \) |
| 79 | \( 1 + (-0.455 - 0.121i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (3.06 - 0.821i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-15.2 + 4.08i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 - 13.7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06737945478271197123334621268, −11.34929883948415060386521835468, −9.843441159485964443706878697299, −9.696961104886147825580163539396, −8.957126103293963279024209915317, −7.70321717436705975496401297173, −6.14970203167096639725976956276, −4.92331207080048766702302856057, −3.35156204117087993513656439631, −1.93634073215538490933220753292,
2.37767052949276498156148617185, 3.28077887505769305922674400179, 5.00646112470128736338583050977, 6.89450415779111495602573596927, 7.59884879885618363136631311419, 8.728478248119460470265857280214, 9.480715764254436244144602146295, 10.09116246474969126451968714288, 12.17529774049293676703275371775, 12.95758183052952261072452005072