Properties

Degree $2$
Conductor $1849$
Sign $-1$
Motivic weight $3$
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3.04·2-s − 1.42·3-s + 1.28·4-s + 10.9·5-s + 4.35·6-s + 8.62·7-s + 20.4·8-s − 24.9·9-s − 33.3·10-s + 42.2·11-s − 1.84·12-s + 78.4·13-s − 26.2·14-s − 15.6·15-s − 72.6·16-s + 75.8·17-s + 76.0·18-s − 107.·19-s + 14.1·20-s − 12.3·21-s − 128.·22-s − 27.7·23-s − 29.2·24-s − 5.15·25-s − 239.·26-s + 74.2·27-s + 11.1·28-s + ⋯
L(s)  = 1  − 1.07·2-s − 0.275·3-s + 0.161·4-s + 0.979·5-s + 0.296·6-s + 0.465·7-s + 0.903·8-s − 0.924·9-s − 1.05·10-s + 1.15·11-s − 0.0443·12-s + 1.67·13-s − 0.501·14-s − 0.269·15-s − 1.13·16-s + 1.08·17-s + 0.995·18-s − 1.30·19-s + 0.157·20-s − 0.128·21-s − 1.24·22-s − 0.251·23-s − 0.248·24-s − 0.0412·25-s − 1.80·26-s + 0.529·27-s + 0.0749·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1849\)    =    \(43^{2}\)
Sign: $-1$
Motivic weight: \(3\)
Character: $\chi_{1849} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1849,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 \)
good2 \( 1 + 3.04T + 8T^{2} \)
3 \( 1 + 1.42T + 27T^{2} \)
5 \( 1 - 10.9T + 125T^{2} \)
7 \( 1 - 8.62T + 343T^{2} \)
11 \( 1 - 42.2T + 1.33e3T^{2} \)
13 \( 1 - 78.4T + 2.19e3T^{2} \)
17 \( 1 - 75.8T + 4.91e3T^{2} \)
19 \( 1 + 107.T + 6.85e3T^{2} \)
23 \( 1 + 27.7T + 1.21e4T^{2} \)
29 \( 1 + 12.6T + 2.43e4T^{2} \)
31 \( 1 + 188.T + 2.97e4T^{2} \)
37 \( 1 + 84.0T + 5.06e4T^{2} \)
41 \( 1 + 215.T + 6.89e4T^{2} \)
47 \( 1 + 598.T + 1.03e5T^{2} \)
53 \( 1 - 368.T + 1.48e5T^{2} \)
59 \( 1 + 62.2T + 2.05e5T^{2} \)
61 \( 1 + 186.T + 2.26e5T^{2} \)
67 \( 1 + 717.T + 3.00e5T^{2} \)
71 \( 1 - 474.T + 3.57e5T^{2} \)
73 \( 1 + 1.22e3T + 3.89e5T^{2} \)
79 \( 1 + 1.13e3T + 4.93e5T^{2} \)
83 \( 1 + 632.T + 5.71e5T^{2} \)
89 \( 1 - 6.66T + 7.04e5T^{2} \)
97 \( 1 + 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.591647616867031483048211289115, −8.124651559718940349614606947952, −6.90187080358645378026765382049, −6.09851266603254450603903785053, −5.54630551755132143944530717092, −4.36617437296400840281645049976, −3.37294275287079305668056733090, −1.77159645791452110667542605685, −1.34977448453494282927684647676, 0, 1.34977448453494282927684647676, 1.77159645791452110667542605685, 3.37294275287079305668056733090, 4.36617437296400840281645049976, 5.54630551755132143944530717092, 6.09851266603254450603903785053, 6.90187080358645378026765382049, 8.124651559718940349614606947952, 8.591647616867031483048211289115

Graph of the $Z$-function along the critical line