Properties

Label 2-1848-1.1-c1-0-27
Degree $2$
Conductor $1848$
Sign $-1$
Analytic cond. $14.7563$
Root an. cond. $3.84140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.56·5-s − 7-s + 9-s − 11-s − 0.561·13-s − 2.56·15-s − 5.12·17-s − 4.56·19-s + 21-s − 4·23-s + 1.56·25-s − 27-s − 0.561·29-s + 2·31-s + 33-s − 2.56·35-s − 4.56·37-s + 0.561·39-s + 10.2·41-s − 10.2·43-s + 2.56·45-s − 13.6·47-s + 49-s + 5.12·51-s + 3.12·53-s − 2.56·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.14·5-s − 0.377·7-s + 0.333·9-s − 0.301·11-s − 0.155·13-s − 0.661·15-s − 1.24·17-s − 1.04·19-s + 0.218·21-s − 0.834·23-s + 0.312·25-s − 0.192·27-s − 0.104·29-s + 0.359·31-s + 0.174·33-s − 0.432·35-s − 0.749·37-s + 0.0899·39-s + 1.60·41-s − 1.56·43-s + 0.381·45-s − 1.99·47-s + 0.142·49-s + 0.717·51-s + 0.428·53-s − 0.345·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1848\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(14.7563\)
Root analytic conductor: \(3.84140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1848,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 + T \)
good5 \( 1 - 2.56T + 5T^{2} \)
13 \( 1 + 0.561T + 13T^{2} \)
17 \( 1 + 5.12T + 17T^{2} \)
19 \( 1 + 4.56T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 0.561T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + 4.56T + 37T^{2} \)
41 \( 1 - 10.2T + 41T^{2} \)
43 \( 1 + 10.2T + 43T^{2} \)
47 \( 1 + 13.6T + 47T^{2} \)
53 \( 1 - 3.12T + 53T^{2} \)
59 \( 1 - 13.9T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 - 2.56T + 67T^{2} \)
71 \( 1 - 2.24T + 71T^{2} \)
73 \( 1 - 3.68T + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 + 16.2T + 83T^{2} \)
89 \( 1 + 16.2T + 89T^{2} \)
97 \( 1 - 7.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.919954766750834372448795973539, −8.185426373712963037404097378663, −6.95249674622891741865506578159, −6.40910039168689416328769878945, −5.73710391289535026987851271149, −4.88430955898731225087180162183, −3.96547637377342995643313940462, −2.56079219372947162612990446725, −1.75489374438977001622753267559, 0, 1.75489374438977001622753267559, 2.56079219372947162612990446725, 3.96547637377342995643313940462, 4.88430955898731225087180162183, 5.73710391289535026987851271149, 6.40910039168689416328769878945, 6.95249674622891741865506578159, 8.185426373712963037404097378663, 8.919954766750834372448795973539

Graph of the $Z$-function along the critical line