L(s) = 1 | + (−1.54 + 1.26i)2-s + 0.245·3-s + (0.774 − 3.92i)4-s − 4.88i·5-s + (−0.380 + 0.312i)6-s − 0.635i·7-s + (3.78 + 7.04i)8-s − 8.93·9-s + (6.20 + 7.54i)10-s − 16.7·11-s + (0.190 − 0.965i)12-s + 18.0i·13-s + (0.807 + 0.982i)14-s − 1.20i·15-s + (−14.7 − 6.08i)16-s − 0.253·17-s + ⋯ |
L(s) = 1 | + (−0.772 + 0.634i)2-s + 0.0819·3-s + (0.193 − 0.981i)4-s − 0.977i·5-s + (−0.0633 + 0.0520i)6-s − 0.0908i·7-s + (0.473 + 0.880i)8-s − 0.993·9-s + (0.620 + 0.754i)10-s − 1.52·11-s + (0.0158 − 0.0804i)12-s + 1.38i·13-s + (0.0576 + 0.0701i)14-s − 0.0801i·15-s + (−0.924 − 0.380i)16-s − 0.0149·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.880 + 0.473i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0320346 - 0.127312i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0320346 - 0.127312i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.54 - 1.26i)T \) |
| 23 | \( 1 + 4.79iT \) |
good | 3 | \( 1 - 0.245T + 9T^{2} \) |
| 5 | \( 1 + 4.88iT - 25T^{2} \) |
| 7 | \( 1 + 0.635iT - 49T^{2} \) |
| 11 | \( 1 + 16.7T + 121T^{2} \) |
| 13 | \( 1 - 18.0iT - 169T^{2} \) |
| 17 | \( 1 + 0.253T + 289T^{2} \) |
| 19 | \( 1 + 24.4T + 361T^{2} \) |
| 29 | \( 1 + 52.8iT - 841T^{2} \) |
| 31 | \( 1 - 29.9iT - 961T^{2} \) |
| 37 | \( 1 + 28.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 51.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + 63.6T + 1.84e3T^{2} \) |
| 47 | \( 1 - 39.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 58.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 84.9T + 3.48e3T^{2} \) |
| 61 | \( 1 - 14.4iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 2.53T + 4.48e3T^{2} \) |
| 71 | \( 1 + 65.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 38.9T + 5.32e3T^{2} \) |
| 79 | \( 1 - 62.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 129.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 103.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 118.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.81480073522734965990778866794, −10.81677100973010487804406288076, −9.764368080432886094972375579982, −8.606953970261408700754960606924, −8.268418551048781733013315126159, −6.83019333549438021392963703373, −5.62224440478282653214114335843, −4.61839675602351183139874355789, −2.18547608345808087049203561851, −0.089925096311959133658249209108,
2.51597744067916206406780932360, 3.27704716673860442831375341149, 5.36666415115206113963517166632, 6.83991439442365208726352304078, 7.998779438617783722355656685040, 8.648275522856806099003511902503, 10.28981352776055365518232369068, 10.55416752596380204991448082653, 11.51525841612984607356125628175, 12.73216552364958555094841678381