L(s) = 1 | + (−1.66 + 1.10i)2-s + 2.74·3-s + (1.56 − 3.68i)4-s − 5.36i·5-s + (−4.58 + 3.03i)6-s + 10.3i·7-s + (1.45 + 7.86i)8-s − 1.44·9-s + (5.92 + 8.94i)10-s + 19.0·11-s + (4.29 − 10.1i)12-s − 18.2i·13-s + (−11.3 − 17.2i)14-s − 14.7i·15-s + (−11.1 − 11.5i)16-s + 18.3·17-s + ⋯ |
L(s) = 1 | + (−0.833 + 0.551i)2-s + 0.916·3-s + (0.390 − 0.920i)4-s − 1.07i·5-s + (−0.763 + 0.505i)6-s + 1.47i·7-s + (0.181 + 0.983i)8-s − 0.160·9-s + (0.592 + 0.894i)10-s + 1.73·11-s + (0.358 − 0.843i)12-s − 1.40i·13-s + (−0.813 − 1.22i)14-s − 0.982i·15-s + (−0.694 − 0.719i)16-s + 1.08·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.181i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.983 - 0.181i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.44674 + 0.132694i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44674 + 0.132694i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.66 - 1.10i)T \) |
| 23 | \( 1 - 4.79iT \) |
good | 3 | \( 1 - 2.74T + 9T^{2} \) |
| 5 | \( 1 + 5.36iT - 25T^{2} \) |
| 7 | \( 1 - 10.3iT - 49T^{2} \) |
| 11 | \( 1 - 19.0T + 121T^{2} \) |
| 13 | \( 1 + 18.2iT - 169T^{2} \) |
| 17 | \( 1 - 18.3T + 289T^{2} \) |
| 19 | \( 1 - 23.0T + 361T^{2} \) |
| 29 | \( 1 + 1.54iT - 841T^{2} \) |
| 31 | \( 1 + 23.3iT - 961T^{2} \) |
| 37 | \( 1 - 16.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 13.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + 79.9T + 1.84e3T^{2} \) |
| 47 | \( 1 - 72.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 29.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 37.7T + 3.48e3T^{2} \) |
| 61 | \( 1 + 4.27iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 65.1T + 4.48e3T^{2} \) |
| 71 | \( 1 + 27.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 64.7T + 5.32e3T^{2} \) |
| 79 | \( 1 + 91.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 110.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 140.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 82.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.22029645695723119770023535661, −11.60532686548506010678020220954, −9.773427408398929231100762301476, −9.173260336878660447905207500576, −8.505886108128907729553519911337, −7.75534714282865834739801527513, −6.02315803214314651290539155049, −5.23101820031642315684688810775, −3.07471721754731921186093096742, −1.33087346584167417155959554008,
1.49639231164429394527562810830, 3.26479824202040688931638145599, 3.89444702055710733233744856267, 6.80949447689831244672002112758, 7.16480657241857905728130542246, 8.454557344367867288777543185724, 9.487332924125204774249167902077, 10.17777601328807253847214078825, 11.34248263110411880116720979418, 11.90416615346900384359661963862