Properties

Label 2-184-184.11-c1-0-3
Degree $2$
Conductor $184$
Sign $0.191 - 0.981i$
Analytic cond. $1.46924$
Root an. cond. $1.21212$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.592 − 1.28i)2-s + (−0.468 + 3.26i)3-s + (−1.29 − 1.52i)4-s + (−2.28 + 0.670i)5-s + (3.90 + 2.53i)6-s + (2.41 + 2.79i)7-s + (−2.72 + 0.765i)8-s + (−7.53 − 2.21i)9-s + (−0.491 + 3.33i)10-s + (−0.743 + 1.15i)11-s + (5.56 − 3.51i)12-s + (2.83 + 2.46i)13-s + (5.01 − 1.45i)14-s + (−1.11 − 7.76i)15-s + (−0.629 + 3.95i)16-s + (3.07 − 1.40i)17-s + ⋯
L(s)  = 1  + (0.418 − 0.908i)2-s + (−0.270 + 1.88i)3-s + (−0.649 − 0.760i)4-s + (−1.02 + 0.299i)5-s + (1.59 + 1.03i)6-s + (0.914 + 1.05i)7-s + (−0.962 + 0.270i)8-s + (−2.51 − 0.737i)9-s + (−0.155 + 1.05i)10-s + (−0.224 + 0.349i)11-s + (1.60 − 1.01i)12-s + (0.787 + 0.682i)13-s + (1.34 − 0.388i)14-s + (−0.288 − 2.00i)15-s + (−0.157 + 0.987i)16-s + (0.746 − 0.340i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.191 - 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.191 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $0.191 - 0.981i$
Analytic conductor: \(1.46924\)
Root analytic conductor: \(1.21212\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{184} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :1/2),\ 0.191 - 0.981i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.782883 + 0.644977i\)
\(L(\frac12)\) \(\approx\) \(0.782883 + 0.644977i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.592 + 1.28i)T \)
23 \( 1 + (-1.17 + 4.65i)T \)
good3 \( 1 + (0.468 - 3.26i)T + (-2.87 - 0.845i)T^{2} \)
5 \( 1 + (2.28 - 0.670i)T + (4.20 - 2.70i)T^{2} \)
7 \( 1 + (-2.41 - 2.79i)T + (-0.996 + 6.92i)T^{2} \)
11 \( 1 + (0.743 - 1.15i)T + (-4.56 - 10.0i)T^{2} \)
13 \( 1 + (-2.83 - 2.46i)T + (1.85 + 12.8i)T^{2} \)
17 \( 1 + (-3.07 + 1.40i)T + (11.1 - 12.8i)T^{2} \)
19 \( 1 + (-0.864 - 0.394i)T + (12.4 + 14.3i)T^{2} \)
29 \( 1 + (-1.11 + 0.508i)T + (18.9 - 21.9i)T^{2} \)
31 \( 1 + (-4.52 + 0.650i)T + (29.7 - 8.73i)T^{2} \)
37 \( 1 + (1.98 + 0.584i)T + (31.1 + 20.0i)T^{2} \)
41 \( 1 + (0.179 - 0.0527i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (-5.68 - 0.816i)T + (41.2 + 12.1i)T^{2} \)
47 \( 1 - 6.84iT - 47T^{2} \)
53 \( 1 + (1.99 + 2.30i)T + (-7.54 + 52.4i)T^{2} \)
59 \( 1 + (5.46 - 6.30i)T + (-8.39 - 58.3i)T^{2} \)
61 \( 1 + (0.680 + 4.73i)T + (-58.5 + 17.1i)T^{2} \)
67 \( 1 + (-2.98 - 4.64i)T + (-27.8 + 60.9i)T^{2} \)
71 \( 1 + (-4.40 - 6.84i)T + (-29.4 + 64.5i)T^{2} \)
73 \( 1 + (5.14 - 11.2i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (-0.151 + 0.174i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (-4.06 + 13.8i)T + (-69.8 - 44.8i)T^{2} \)
89 \( 1 + (-3.75 - 0.540i)T + (85.3 + 25.0i)T^{2} \)
97 \( 1 + (4.62 + 15.7i)T + (-81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.26813807712742863280329301203, −11.54421939295338314246713173250, −11.09275630378381623702501094727, −10.11399747045083942862439835435, −9.096130031207811939649662319760, −8.300546863747170693099662855352, −5.88291254324594856483539627248, −4.84392833646194794500656341758, −4.09766254793172716969075857607, −2.90003677314711078992528294485, 0.907016684843145767326118500064, 3.51289774899366005090739224232, 5.13615266691491830594661519136, 6.27075794482142397618124630865, 7.50512593507955906440739292285, 7.81617875611330471703019865214, 8.524943018250262745839207026428, 10.91184708733944703210836955368, 11.82081692352832524323860827490, 12.52800031871043541569278961201

Graph of the $Z$-function along the critical line