Properties

Label 2-1824-76.75-c1-0-37
Degree $2$
Conductor $1824$
Sign $0.368 + 0.929i$
Analytic cond. $14.5647$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2.90·5-s − 5.16i·7-s + 9-s + 0.0935i·11-s − 5.74i·13-s + 2.90·15-s + 5.46·17-s + (−1.72 + 4.00i)19-s − 5.16i·21-s + 5.54i·23-s + 3.46·25-s + 27-s + 0.745i·29-s − 9.99·31-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.30·5-s − 1.95i·7-s + 0.333·9-s + 0.0281i·11-s − 1.59i·13-s + 0.751·15-s + 1.32·17-s + (−0.396 + 0.917i)19-s − 1.12i·21-s + 1.15i·23-s + 0.692·25-s + 0.192·27-s + 0.138i·29-s − 1.79·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.368 + 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.368 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1824\)    =    \(2^{5} \cdot 3 \cdot 19\)
Sign: $0.368 + 0.929i$
Analytic conductor: \(14.5647\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1824} (607, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1824,\ (\ :1/2),\ 0.368 + 0.929i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.723800193\)
\(L(\frac12)\) \(\approx\) \(2.723800193\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 + (1.72 - 4.00i)T \)
good5 \( 1 - 2.90T + 5T^{2} \)
7 \( 1 + 5.16iT - 7T^{2} \)
11 \( 1 - 0.0935iT - 11T^{2} \)
13 \( 1 + 5.74iT - 13T^{2} \)
17 \( 1 - 5.46T + 17T^{2} \)
23 \( 1 - 5.54iT - 23T^{2} \)
29 \( 1 - 0.745iT - 29T^{2} \)
31 \( 1 + 9.99T + 31T^{2} \)
37 \( 1 + 5.57iT - 37T^{2} \)
41 \( 1 - 5.68iT - 41T^{2} \)
43 \( 1 + 6.05iT - 43T^{2} \)
47 \( 1 + 5.23iT - 47T^{2} \)
53 \( 1 - 5.68iT - 53T^{2} \)
59 \( 1 + 14.1T + 59T^{2} \)
61 \( 1 - 6.21T + 61T^{2} \)
67 \( 1 - 3.76T + 67T^{2} \)
71 \( 1 - 14.6T + 71T^{2} \)
73 \( 1 - 9.65T + 73T^{2} \)
79 \( 1 - 7.85T + 79T^{2} \)
83 \( 1 - 2.62iT - 83T^{2} \)
89 \( 1 - 11.9iT - 89T^{2} \)
97 \( 1 - 10.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.462047293912660665735025687384, −8.036661913600765697694815979885, −7.69514560844297977608389556456, −6.87522534558902401368141111324, −5.77181581489763282569004756912, −5.21583252623921355108115613341, −3.78075881216860828472910858561, −3.36841753886675979832674192530, −1.90067950415999553312313098379, −0.957315243682924038304390312324, 1.81163888597926701627384248570, 2.26441429890712872951420511900, 3.21831961485740557526313348709, 4.66013314613390532535555020737, 5.44869725005880433541341744480, 6.18910700609222873663330047691, 6.82609096073647270496940205912, 8.105113652583576148485467903009, 8.859785939072121770164578417483, 9.369064948150967794057704146516

Graph of the $Z$-function along the critical line