L(s) = 1 | + (−1.30 + 1.14i)3-s − 3.53i·5-s − 3.09i·7-s + (0.383 − 2.97i)9-s + 5.60·11-s + 0.378·13-s + (4.04 + 4.59i)15-s + 1.90i·17-s − i·19-s + (3.54 + 4.02i)21-s + 7.91·23-s − 7.48·25-s + (2.90 + 4.30i)27-s − 9.18i·29-s + 6.82i·31-s + ⋯ |
L(s) = 1 | + (−0.750 + 0.660i)3-s − 1.58i·5-s − 1.17i·7-s + (0.127 − 0.991i)9-s + 1.69·11-s + 0.105·13-s + (1.04 + 1.18i)15-s + 0.463i·17-s − 0.229i·19-s + (0.772 + 0.878i)21-s + 1.64·23-s − 1.49·25-s + (0.559 + 0.829i)27-s − 1.70i·29-s + 1.22i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0640 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0640 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.434538899\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.434538899\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.30 - 1.14i)T \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 + 3.53iT - 5T^{2} \) |
| 7 | \( 1 + 3.09iT - 7T^{2} \) |
| 11 | \( 1 - 5.60T + 11T^{2} \) |
| 13 | \( 1 - 0.378T + 13T^{2} \) |
| 17 | \( 1 - 1.90iT - 17T^{2} \) |
| 23 | \( 1 - 7.91T + 23T^{2} \) |
| 29 | \( 1 + 9.18iT - 29T^{2} \) |
| 31 | \( 1 - 6.82iT - 31T^{2} \) |
| 37 | \( 1 + 2.82T + 37T^{2} \) |
| 41 | \( 1 - 0.521iT - 41T^{2} \) |
| 43 | \( 1 + 6.60iT - 43T^{2} \) |
| 47 | \( 1 - 11.2T + 47T^{2} \) |
| 53 | \( 1 + 8.42iT - 53T^{2} \) |
| 59 | \( 1 + 10.7T + 59T^{2} \) |
| 61 | \( 1 + 4.72T + 61T^{2} \) |
| 67 | \( 1 - 9.11iT - 67T^{2} \) |
| 71 | \( 1 + 1.69T + 71T^{2} \) |
| 73 | \( 1 + 2.30T + 73T^{2} \) |
| 79 | \( 1 + 5.74iT - 79T^{2} \) |
| 83 | \( 1 + 8.83T + 83T^{2} \) |
| 89 | \( 1 - 13.1iT - 89T^{2} \) |
| 97 | \( 1 - 10.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.003156918408155296336067485643, −8.670100503643489378496086633947, −7.34081094528930483190411088411, −6.60488170491459366860061872652, −5.70868703893729067228795795301, −4.77817694684175345586167556793, −4.23967913020591036063035118985, −3.59000542794587121863701750427, −1.36329244152818240736818605233, −0.70454512468731196621871621442,
1.39289341443256600109211941087, 2.54075251887986774087021656855, 3.34747296325995142592072688431, 4.67253744568824084875457769910, 5.80743160705311538538673502763, 6.27977128910382794800711332303, 7.02279426748080469957013306974, 7.49958049924618660434565279166, 8.836594447878067938856473075922, 9.330006251677026712427332253952