L(s) = 1 | + (1.73 + 0.0731i)3-s − 0.691i·5-s + 2.48i·7-s + (2.98 + 0.253i)9-s + 0.168·11-s + 1.70·13-s + (0.0506 − 1.19i)15-s + 6.00i·17-s − i·19-s + (−0.181 + 4.29i)21-s − 3.77·23-s + 4.52·25-s + (5.15 + 0.657i)27-s + 0.299i·29-s + 4.79i·31-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0422i)3-s − 0.309i·5-s + 0.937i·7-s + (0.996 + 0.0844i)9-s + 0.0508·11-s + 0.473·13-s + (0.0130 − 0.308i)15-s + 1.45i·17-s − 0.229i·19-s + (−0.0396 + 0.936i)21-s − 0.787·23-s + 0.904·25-s + (0.991 + 0.126i)27-s + 0.0556i·29-s + 0.860i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.736 - 0.676i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.736 - 0.676i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.593532267\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.593532267\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.73 - 0.0731i)T \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 + 0.691iT - 5T^{2} \) |
| 7 | \( 1 - 2.48iT - 7T^{2} \) |
| 11 | \( 1 - 0.168T + 11T^{2} \) |
| 13 | \( 1 - 1.70T + 13T^{2} \) |
| 17 | \( 1 - 6.00iT - 17T^{2} \) |
| 23 | \( 1 + 3.77T + 23T^{2} \) |
| 29 | \( 1 - 0.299iT - 29T^{2} \) |
| 31 | \( 1 - 4.79iT - 31T^{2} \) |
| 37 | \( 1 + 0.792T + 37T^{2} \) |
| 41 | \( 1 - 0.126iT - 41T^{2} \) |
| 43 | \( 1 + 1.34iT - 43T^{2} \) |
| 47 | \( 1 - 0.240T + 47T^{2} \) |
| 53 | \( 1 + 4.06iT - 53T^{2} \) |
| 59 | \( 1 - 9.72T + 59T^{2} \) |
| 61 | \( 1 + 2.29T + 61T^{2} \) |
| 67 | \( 1 - 6.90iT - 67T^{2} \) |
| 71 | \( 1 + 11.7T + 71T^{2} \) |
| 73 | \( 1 - 11.1T + 73T^{2} \) |
| 79 | \( 1 - 2.57iT - 79T^{2} \) |
| 83 | \( 1 + 5.72T + 83T^{2} \) |
| 89 | \( 1 + 4.50iT - 89T^{2} \) |
| 97 | \( 1 - 10.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.057537398845693527306412514916, −8.610493822200637389530308694689, −8.115257102670599855630051735138, −7.04416680161199344398466149714, −6.18435870948788175206925250083, −5.27712668367228392433303694569, −4.24357698796654565283102121905, −3.42019451827703070581565152659, −2.39443565934857510918774719044, −1.44800626028499724724241154505,
0.927279638248695711134768152072, 2.26802173182499856379031846891, 3.23419095368837060882994357977, 4.02368644844555997817918463346, 4.85346105985439930548581096776, 6.14914499259458953637986795934, 7.07686509423770120357044590018, 7.52203284113503480324091551074, 8.357129124781411809436913049244, 9.174326244904362357302684426945